
(a)
Interpretation: For the given set of compounds, the compound with higher boiling point has to be identified.
Concept Introduction: The boiling points for the given set of compounds will be identified by knowing dipole-dipole interactions, hydrogen bonding, number of carbon atoms and extent of branching within the given set of compounds.
A dipole-dipole interaction is the attraction between two polar molecules. When they approach each other, the negative end one molecule attracts the positive end of the other.
The interaction between highly electronegative atom and hydrogen atom is called hydrogen bonding. Electronegative atom should have lone pair of electrons to form hydrogen bonding. It is the process of interaction only i.e., no bond formation is involved.
Boiling points can be distinguished by the molecular weight of the compounds. It is based on the number of heavier atoms involved in bond formation. Linear or branching manner can also involve in the determination of boiling points. The compound with less branching structure has more boiling points and vice versa.
To find: The higher boiling point of a compound in the given pair of the compounds (a)
(b)
Interpretation: For the given set of compounds, the compound with higher boiling point has to be identified.
Concept Introduction: The boiling points for the given set of compounds will be identified by knowing dipole-dipole interactions, hydrogen bonding, number of carbon atoms and extent of branching within the given set of compounds.
A dipole-dipole interaction is the attraction between two polar molecules. When they approach each other, the negative end one molecule attracts the positive end of the other.
The interaction between highly electronegative atom and hydrogen atom is called hydrogen bonding. Electronegative atom should have lone pair of electrons to form hydrogen bonding. It is the process of interaction only i.e., no bond formation is involved.
Boiling points can be distinguished by the molecular weight of the compounds. It is based on the number of heavier atoms involved in bond formation. Linear or branching manner can also involve in the determination of boiling points. The compound with less branching structure has more boiling points and vice versa.
To find: The higher boiling point of a compound in the given pair of the compounds (b)
(c)
Interpretation: For the given set of compounds, the compound with higher boiling point has to be identified.
Concept Introduction: The boiling points for the given set of compounds will be identified by knowing dipole-dipole interactions, hydrogen bonding, number of carbon atoms and extent of branching within the given set of compounds.
A dipole-dipole interaction is the attraction between two polar molecules. When they approach each other, the negative end one molecule attracts the positive end of the other.
The interaction between highly electronegative atom and hydrogen atom is called hydrogen bonding. Electronegative atom should have lone pair of electrons to form hydrogen bonding. It is the process of interaction only i.e., no bond formation is involved.
Boiling points can be distinguished by the molecular weight of the compounds. It is based on the number of heavier atoms involved in bond formation. Linear or branching manner can also involve in the determination of boiling points. The compound with less branching structure has more boiling points and vice versa.
To find: The higher boiling point of a compound in the given pair of the compounds (c)
(d)
Interpretation: For the given set of compounds, the compound with higher boiling point has to be identified.
Concept Introduction: The boiling points for the given set of compounds will be identified by knowing dipole-dipole interactions, hydrogen bonding, and number of carbon atoms and extent of branching within the given set of compounds.
A dipole-dipole interaction is the attraction between two polar molecules. When they approach each other, the negative end one molecule attracts the positive end of the other.
The interaction between highly electronegative atom and hydrogen atom is called hydrogen bonding. Electronegative atom should have lone pair of electrons to form hydrogen bonding. It is the process of interaction only i.e., no bond formation is involved.
Boiling points can be distinguished by the molecular weight of the compounds. It is based on the number of heavier atoms involved in bond formation. Linear or branching manner can also involve in the determination of boiling points. The compound with less branching structure has more boiling points and vice versa.
To find: The higher boiling point of a compound in the given pair of the compounds (d)

Want to see the full answer?
Check out a sample textbook solution
Chapter 1 Solutions
Organic Chemistry
- LIOT S How would you make 200. mL of a 0.5 M solution of CuSO4 5H2O from solid copper (II) sulfate? View Rubricarrow_forwardSteps and explantions pleasearrow_forwardMatch the denticity to the ligand. Water monodentate ✓ C₂O2 bidentate H₂NCH₂NHCH2NH2 bidentate x EDTA hexadentate Question 12 Partially correct Mark 2 out of 2 Flag question Provide the required information for the coordination compound shown below: Na NC-Ag-CN] Number of ligands: 20 Coordination number: 2✔ Geometry: linear Oxidation state of transition metal ion: +3 x in 12 correct out of 2 question Provide the required information for the coordination compound shown below. Na NC-Ag-CN] Number of ligands: 20 Coordination number: 2 Geometry: linear 0 Oxidation state of transition metal ion: +3Xarrow_forward
- Can you explain step by step behind what the synthetic strategy would be?arrow_forwardPlease explain step by step in detail the reasoning behind this problem/approach/and answer. thank you!arrow_forward2. Predict the product(s) that forms and explain why it forms. Assume that any necessary catalytic acid is present. .OH HO H₂N OHarrow_forward
- consider the rate of the reaction below to be r. Whats the rate after each reaction? Br + NaCN CN + NaBr a. Double the concentration of alkyl bromide b. Halve the concentration of the electrophile & triple concentration of cyanide c. Halve the concentration of alkyl chloridearrow_forwardPredict the organic reactant that is involved in the reaction below, and draw the skeletal ("line") structures of the missing organic reactant. Please include all steps & drawings & explanations.arrow_forwardWhat are the missing reagents for the spots labeled 1 and 3? Please give a detailed explanation and include the drawings and show how the synthesis proceeds with the reagents.arrow_forward
- What is the organic molecule X of the following acetal hydrolysis? Please draw a skeletal line structure and include a detailed explanation and drawing of how the mechanism proceeds. Please include any relevant information that is needed to understand the process of acetal hydrolysis.arrow_forwardWhat are is the organic molecule X and product Y of the following acetal hydrolysis? Please draw a skeletal line structure and include a detailed explanation and drawing of how the mechanism proceeds. Please include any relevant information that is needed to understand the process of acetal hydrolysis.arrow_forwardAt 300 K, in the decomposition reaction of a reactant R into products, several measurements of the concentration of R over time have been made (see table). Without using graphs, calculate the order of the reaction. t/s [R]/(mol L-1) 0 0,5 171 0,16 720 0,05 1400 0,027arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





