Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 89P
(a)
To determine
To Calculate:The ratioGravitational acceleration at the surface of sun after collapse to the value at the surface of the sun today.
(b)
To determine
The ratio of escape speed from the surface of the neutron-Sun to the Sun’s value today.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
*39 Will the universe continue to expand forever? To attack this
question, assume that the theory of dark energy is in error and that
the recessional speed v of a galaxy a distance r from us is determined
only by the gravitational interaction of the matter that lies inside
a sphere of radius r centered on us. If the total mass inside this
sphere is M, the escape speed v, from the sphere is v. = V2GMIT
(Eq. 13-28). (a) Show that to prevent unlimited expansion, the aver-
age density p inside the sphere must be at least equal to
ЗН
87G
(b) Evaluate this "critical density" numerically; express your an-
swer in terms of hydrogen atoms per cubic meter. Measurements
of the actual density are difficult and are complicated by the pres-
ence of dark matter.
Compact objects and black-holes
2. Consider three compact objects in the form of: a white dwarf of 0.5Mo; a
neutron star of 1.4Mo and a black-hole of 50 Mo. The radii of the white
dwarf and neutron star are: Rwp 5.5 106 m and and RNS
10 Km.
(a) Determine the radii of curvature Re = c2/g (where c is the speed of light
and g is the local gravitational acceleration) around cach objcct specifying
which radius you assume for the BH.
esc
a) 10 points) Gravitational Time Dilation. The escape velocity from the surface (radius r) of a star or
planet of mass M is given by the formula v = (2GM/r). Use this expression to write the time-dilation
fraction, At/t, in terms of the ratio of vesc to the speed of light, c. Hint: This is just a simple exercise in
substitution.
5.98 x 1024 kg
b) (10 points) Extra Lifetime on the Surface of Earth. The Earth has mass MEarth
and radius REarth 6.38 x 10 m. What is the fractional time-dilation (At/t) for someone on the Earth's
surface? How much longer (At) is a typical lifetime on the surface of Earth, compared to someone in deep
space, far away from Earth? Assume a typical human life span of t = 80 years.
I
Chapter 11 Solutions
Physics for Scientists and Engineers
Ch. 11 - Prob. 1PCh. 11 - Prob. 2PCh. 11 - Prob. 3PCh. 11 - Prob. 4PCh. 11 - Prob. 5PCh. 11 - Prob. 6PCh. 11 - Prob. 7PCh. 11 - Prob. 8PCh. 11 - Prob. 9PCh. 11 - Prob. 10P
Ch. 11 - Prob. 11PCh. 11 - Prob. 12PCh. 11 - Prob. 13PCh. 11 - Prob. 14PCh. 11 - Prob. 15PCh. 11 - Prob. 16PCh. 11 - Prob. 17PCh. 11 - Prob. 18PCh. 11 - Prob. 19PCh. 11 - Prob. 20PCh. 11 - Prob. 21PCh. 11 - Prob. 22PCh. 11 - Prob. 23PCh. 11 - Prob. 24PCh. 11 - Prob. 25PCh. 11 - Prob. 26PCh. 11 - Prob. 27PCh. 11 - Prob. 28PCh. 11 - Prob. 29PCh. 11 - Prob. 30PCh. 11 - Prob. 31PCh. 11 - Prob. 32PCh. 11 - Prob. 33PCh. 11 - Prob. 34PCh. 11 - Prob. 35PCh. 11 - Prob. 36PCh. 11 - Prob. 37PCh. 11 - Prob. 38PCh. 11 - Prob. 39PCh. 11 - Prob. 40PCh. 11 - Prob. 41PCh. 11 - Prob. 42PCh. 11 - Prob. 43PCh. 11 - Prob. 44PCh. 11 - Prob. 45PCh. 11 - Prob. 46PCh. 11 - Prob. 47PCh. 11 - Prob. 48PCh. 11 - Prob. 49PCh. 11 - Prob. 50PCh. 11 - Prob. 51PCh. 11 - Prob. 52PCh. 11 - Prob. 53PCh. 11 - Prob. 54PCh. 11 - Prob. 55PCh. 11 - Prob. 56PCh. 11 - Prob. 57PCh. 11 - Prob. 58PCh. 11 - Prob. 59PCh. 11 - Prob. 60PCh. 11 - Prob. 61PCh. 11 - Prob. 62PCh. 11 - Prob. 63PCh. 11 - Prob. 64PCh. 11 - Prob. 65PCh. 11 - Prob. 66PCh. 11 - Prob. 67PCh. 11 - Prob. 68PCh. 11 - Prob. 69PCh. 11 - Prob. 70PCh. 11 - Prob. 71PCh. 11 - Prob. 72PCh. 11 - Prob. 73PCh. 11 - Prob. 74PCh. 11 - Prob. 75PCh. 11 - Prob. 76PCh. 11 - Prob. 77PCh. 11 - Prob. 78PCh. 11 - Prob. 79PCh. 11 - Prob. 80PCh. 11 - Prob. 81PCh. 11 - Prob. 82PCh. 11 - Prob. 83PCh. 11 - Prob. 84PCh. 11 - Prob. 85PCh. 11 - Prob. 86PCh. 11 - Prob. 87PCh. 11 - Prob. 88PCh. 11 - Prob. 89PCh. 11 - Prob. 90PCh. 11 - Prob. 91PCh. 11 - Prob. 92PCh. 11 - Prob. 93PCh. 11 - Prob. 94PCh. 11 - Prob. 95PCh. 11 - Prob. 96PCh. 11 - Prob. 97PCh. 11 - Prob. 98PCh. 11 - Prob. 99PCh. 11 - Prob. 100PCh. 11 - Prob. 101PCh. 11 - Prob. 102PCh. 11 - Prob. 103PCh. 11 - Prob. 104PCh. 11 - Prob. 105PCh. 11 - Prob. 106PCh. 11 - Prob. 107P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- . A compact neutron star has a mass of kg (about 1.4 times the mass of the Sun) but a radius of only m (approximately 6.2 mi!). If a clock on the surface of this exotic star marks the passage of 1 h of time, how much time is observed to pass on an identical clock located a very large distance from the neutron star?arrow_forwardShow that the velocity of a star orbiting its galaxy in a circular oibit is inversely proportional to the square root of its orbital radius, assuming the mass of the stars inside its orbit acts like a single mass at the center of the galaxy. You may use an equation from a previous chapter to support your conclusion, but you must justify its use and define all terms used.arrow_forwardA neutron star is a cold, collapsed star with nuclear density. A particular neutron star has a mass twice that of our Sun with a radius of 12.0 km. (a) What would be the weight of a 100-kg astronaut on standing on its surface? (b) What does this tell us about landing on a neutron star?arrow_forward
- Neutron stars are extremely dense objects that are formed from the remnants of supernova explosions. Many rotate very rapidly. Suppose the mass of a certain spherical neutron star is twice the mass of the Sun and its radius is 10.0 km. Determine the greatest possible angular speed the neutron star can have so that the matter at its surface on the equator is just held in orbit by the gravitational force.arrow_forwardA neutron lives 900 s when at rest relative to a observer. How fast is the neutron moving relative to a observer who measures its life span to be 2065 s?arrow_forward(a) What is the effective accelerating potential for electrons at the Stanford Linear Accelerator, if =1.00105 for them? (b) What is their total energy (nearly the same as kinetic in this case) in GeV?arrow_forward
- The radius Rh of a black hole is the radius of a mathematicalsphere, called the event horizon, that is centered on the blackhole. Information from events inside the event horizon cannotreach the outside world. According to Einstein’s general theory ofrelativity, Rh = 2GM/c2, where M is the mass of the black hole andc is the speed of light.Suppose that you wish to study a black hole near it, at a radialdistance of 50Rh. However, you do not want the difference in gravitationalacceleration between your feet and your head to exceed10 m/s2 when you are feet down (or head down) toward the blackhole. (a) As a multiple of our Sun’s mass MS, approximately what isthe limit to the mass of the black hole you can tolerate at the givenradial distance? (You need to estimate your height.) (b) Is the limitan upper limit (you can tolerate smaller masses) or a lower limit(you can tolerate larger masses)?arrow_forwardPlease Asaparrow_forwardWhen a star erupts in a supernova explosion, huge numbers of electron neutrinos are formed in nuclear reactions. Such neutrinos from the 1987A supernova in the relatively nearby Magellanic Cloud were observed within hours of the initial brightening, indicating they traveled to earth at approximately the speed of light. Explain how this data can be used to set anupper limit on the mass of the neutrino, noting that if the mass is small the neutrinos could travel very close to the speed of light and have a reasonable energy (on the order of MeV).arrow_forward
- After our Sun exhausts its nuclear fuel, its ultimate fate may be to collapse to a white dwarf state, in which it has approximately the same mass as it has now but a radius equal to roughly the size of the Earth's radius. (a) Calculate the average density of this white dwarf if the Sun were to collapse to a radius of 6.31 × 10°m. 1.84e+9 Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake i your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. kg/m- (b) Calculate the free-fall acceleration at its surface. 3.27e+6 m/s² (c) Calculate the gravitational potential energy of a 4.00 kg object at its surface. (Take U, = 0 at infinity.) -8.33e+13 Need Help? Read Itarrow_forwardThe nuclear potential energy betweenthe proton and the neutron in a deuteriumnucleus (a hydrogen nucleus with a neutron)has an average value of 2.224 MeV. By howmuch does this interaction change the mass ofthe combined system in MeV/c 2 and kg? Whatis this as a fraction of the combined mass of theproton and the neutron?arrow_forwardAsap, Typed formatarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY