Concept explainers
(a)
To Calculate:The value of constant
(a)
Answer to Problem 80P
Explanation of Solution
Given data:
The density of the sphere,
Radius,
Mass of the sphere,
Formula Used:
Mass = Density
Calculation:
The density of the sphere is
Here C is the constant and r is the distance.
The density of the sphere is varied by a distance so the differential element of the sphere is ,
Integrate within the limits 0 to R .
Therefore the constant C is,
Substitute
Conclusion:
The constant C is
(b)
The acceleration due to gravity for a distance
The gravitation field with in the region
(b)
Answer to Problem 80P
The acceleration due to gravity for a distance
The gravitation field with in the region
Explanation of Solution
Given data:
The density of the sphere,
Radius,
Mass of the sphere,
The constant C is
Formula used:
Gravitational field:
Here, G is the gravitational constant, M is the mass and r is the distance of the point from the center of the sphere.
Calculation:
The expression for the magnitude of gravitational field at a point outside
Substitute
Therefore, the acceleration due to gravity for a distance
The expression for the gravitational field at a point inside
Since the density of the sphere is varying with the distance, so gravitational field is given by for
Substitute
Conclusion:
The acceleration due to gravity for a distance
The gravitation field with in the region
Want to see more full solutions like this?
Chapter 11 Solutions
Physics for Scientists and Engineers
- Calculate the effective gravitational field vector g at Earths surface at the poles and the equator. Take account of the difference in the equatorial (6378 km) and polar (6357 km) radius as well as the centrifugal force. How well does the result agree with the difference calculated with the result g = 9.780356[1 + 0.0052885 sin 2 0.0000059 sin2(2)]m/s2 where is the latitude?arrow_forwardLet gM represent the difference in the gravitational fields produced by the Moon at the points on the Earths surface nearest to and farthest from the Moon. Find the fraction gM/g, where g is the Earths gravitational field. (This difference is responsible for the occurrence of the lunar tides on the Earth.)arrow_forwardWhat is the orbital radius of an Earth satellite having a period of 1.00 h? (b) What is unreasonable about this result?arrow_forward
- Figure 1.19 shows two vectors lying in the xy-plane. Determine the signs of the x- and y-components of A, B, and A+B.arrow_forward(a) Calculate the magnitude of the gravitational force exerted by Mars on a 65 kg human standing on the surface of Mars. (The mass of Mars is 6.4x1023 kg and its radius is 3.4x106 m.) 240.0277 ✓ N (b) Calculate the magnitude of the gravitational force exerted by the human on Mars. 240.0277 N (c) For comparison, calculate the approximate magnitude of the gravitational force of this human on a similar human who is standing 2.5 meters away. 1.76e8 XN (d) What approximations or simplifying assumptions must you make in these calculations? (Note: Some of these choices are false because they are wrong physics!) ✔Treat Mars as though it were spherically symmetric. Ignore the effects of the Sun, which alters the gravitational force that one object exerts on another. ✔Treat the humans as though they were points or uniform-density spheres. O Use the same gravitational constant in (a) and (b) despite its dependence on the size of the masses. Additional Materials eBookarrow_forwardAt what altitude above Earth's surface would the gravitational acceleration be 4.40 m/s²? (Take the Earth's radius as 6370 km.) Number Unitsarrow_forward
- Four masses are at the vertices of a square. Find the magnitude of the gravitational force on the mass m1. Given: m1=6kg, m2=80 kg, m3=80kg, m4=80 kg, r=24m. G=6.674×10-11N.m2/kg2.arrow_forwardYou perform an experiment to verify the gravitational constant on the surface of the Earth, and get the readings recorded in the chart below. Find the average and standard deviation of this data, and fınd the relative error of the average (i.e. percent difference) compared to the known value of the gravitational constant g = 9.81m. Does this data verify the known value? Why? %3| Values 9.91 9.88 9.5 9.2 9.66 8.8 9.7 10.01 9.82 9.81arrow_forwardThe mean diameters of Mars and Earth are 6.9 * 103 km and 1.3 * 104 km, respectively. The mass of Mars is 0.11 times Earth’s mass. (a) What is the ratio of the mean density (mass per unit volume) of Mars to that of Earth? (b)What is the value of the gravitational acceleration on Mars? (c) What is the escape speed on Mars?arrow_forward
- The density inside a solid sphere of radius a is given by p=Po a/r, where Po is the density at the surface and r denotes the distance from the center. Find the gravitational field due to this sphere at a distance 2 a from its center.arrow_forward(a) (i) Define gravitational field strength and state whether it is a scalar or vector quantity. A mass m is at a height h above the surface of a planet (ii) of mass M and radius R. The gravitational field strength at height h is g. By considering the gravitational force acting on massm, derive an equation from Newton's law of gravitation to express g in terms of M, R, h and the gravitational conșțant G.arrow_forwardAt what altitude h above the north pole is the weight of an object reduced to 27% of its earth-surface value? Assume a spherical earth of radius R and express h in terms of R. Answer: h= i R.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning