Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 42P
To determine
The relation between the radius of a planet’s circular orbit around a star and its period.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two planets P, and P, orbit around a star S in circular orbits with speeds v, = 44.4 km/s, and v, = 59.6 km/s respectively.
(a) If the period of the first planet P, is 7.80 years, what is the mass of the star it orbits around?
kg
(b) Determine the orbital period of P,.
yr
(a) Imagine that a space probe could be fired as a projectile from the Earth's surface with an initial speed of 5.78 × 10* m/s relative to the Sun. What would its speed be when it is very far from the
Earth (in m/s)? Ignore atmospheric friction, the effects of other planets, and the rotation of the Earth. (Consider the mass of the Sun in your calculations.)
38107.8
m/s
(b) What If? The speed provided in part (a) is very difficult to achieve technologically. Often, Jupiter is used as a "gravitational slingshot" to increase the speed of a probe to the escape speed from
the solar system, which is 1.85 × 10“ m/s from a point on Jupiter's orbit around the Sun (if Jupiter is not nearby). If the probe is launched from the Earth's surface at a speed of 4.10 x 104 m/s
relative to the Sun, what is the increase in speed needed from the gravitational slingshot at Jupiter for the space probe to escape the solar system (in m/s)? (Assume that the Earth and the point
on Jupiter's orbit lie along the…
The gravitational force exerted by the planet Earth on a unit
mass at a distancer from the center of the planet is
GMr
if rR
where M is the mass of Earth, Ris its radius, and G is the
gravitational constant. Is F a continuous function of r?
Chapter 11 Solutions
Physics for Scientists and Engineers
Ch. 11 - Prob. 1PCh. 11 - Prob. 2PCh. 11 - Prob. 3PCh. 11 - Prob. 4PCh. 11 - Prob. 5PCh. 11 - Prob. 6PCh. 11 - Prob. 7PCh. 11 - Prob. 8PCh. 11 - Prob. 9PCh. 11 - Prob. 10P
Ch. 11 - Prob. 11PCh. 11 - Prob. 12PCh. 11 - Prob. 13PCh. 11 - Prob. 14PCh. 11 - Prob. 15PCh. 11 - Prob. 16PCh. 11 - Prob. 17PCh. 11 - Prob. 18PCh. 11 - Prob. 19PCh. 11 - Prob. 20PCh. 11 - Prob. 21PCh. 11 - Prob. 22PCh. 11 - Prob. 23PCh. 11 - Prob. 24PCh. 11 - Prob. 25PCh. 11 - Prob. 26PCh. 11 - Prob. 27PCh. 11 - Prob. 28PCh. 11 - Prob. 29PCh. 11 - Prob. 30PCh. 11 - Prob. 31PCh. 11 - Prob. 32PCh. 11 - Prob. 33PCh. 11 - Prob. 34PCh. 11 - Prob. 35PCh. 11 - Prob. 36PCh. 11 - Prob. 37PCh. 11 - Prob. 38PCh. 11 - Prob. 39PCh. 11 - Prob. 40PCh. 11 - Prob. 41PCh. 11 - Prob. 42PCh. 11 - Prob. 43PCh. 11 - Prob. 44PCh. 11 - Prob. 45PCh. 11 - Prob. 46PCh. 11 - Prob. 47PCh. 11 - Prob. 48PCh. 11 - Prob. 49PCh. 11 - Prob. 50PCh. 11 - Prob. 51PCh. 11 - Prob. 52PCh. 11 - Prob. 53PCh. 11 - Prob. 54PCh. 11 - Prob. 55PCh. 11 - Prob. 56PCh. 11 - Prob. 57PCh. 11 - Prob. 58PCh. 11 - Prob. 59PCh. 11 - Prob. 60PCh. 11 - Prob. 61PCh. 11 - Prob. 62PCh. 11 - Prob. 63PCh. 11 - Prob. 64PCh. 11 - Prob. 65PCh. 11 - Prob. 66PCh. 11 - Prob. 67PCh. 11 - Prob. 68PCh. 11 - Prob. 69PCh. 11 - Prob. 70PCh. 11 - Prob. 71PCh. 11 - Prob. 72PCh. 11 - Prob. 73PCh. 11 - Prob. 74PCh. 11 - Prob. 75PCh. 11 - Prob. 76PCh. 11 - Prob. 77PCh. 11 - Prob. 78PCh. 11 - Prob. 79PCh. 11 - Prob. 80PCh. 11 - Prob. 81PCh. 11 - Prob. 82PCh. 11 - Prob. 83PCh. 11 - Prob. 84PCh. 11 - Prob. 85PCh. 11 - Prob. 86PCh. 11 - Prob. 87PCh. 11 - Prob. 88PCh. 11 - Prob. 89PCh. 11 - Prob. 90PCh. 11 - Prob. 91PCh. 11 - Prob. 92PCh. 11 - Prob. 93PCh. 11 - Prob. 94PCh. 11 - Prob. 95PCh. 11 - Prob. 96PCh. 11 - Prob. 97PCh. 11 - Prob. 98PCh. 11 - Prob. 99PCh. 11 - Prob. 100PCh. 11 - Prob. 101PCh. 11 - Prob. 102PCh. 11 - Prob. 103PCh. 11 - Prob. 104PCh. 11 - Prob. 105PCh. 11 - Prob. 106PCh. 11 - Prob. 107P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Compute directly the gravitational force on a unit mass at a point exterior to a homogeneous sphere of matter.arrow_forwardWhat is the orbital radius of an Earth satellite having a period of 1.00 h? (b) What is unreasonable about this result?arrow_forwardOn a planet whose radius is 1.2107m , the acceleration due to gravity is 18m/s2 . What is the mass of the planet?arrow_forward
- Check Your Understanding Why not use the simpler expression U=mg(y2y1) ? How significant would the error be? (Recall the previous result, in Example 13.4, that the value g at 400 km above the Earth is 8.67m/s2 .)arrow_forwardCheck Your Understanding By what factor must the radius change to reduce the orbital velocity of a satellite by one-half? By what factor would this change the period?arrow_forwardLet gM represent the difference in the gravitational fields produced by the Moon at the points on the Earths surface nearest to and farthest from the Moon. Find the fraction gM/g, where g is the Earths gravitational field. (This difference is responsible for the occurrence of the lunar tides on the Earth.)arrow_forward
- A solid copper sphere of mass M and radius R has a cavity of radius ½ R. Inside the cavity a particle of mass m placed a distance d > R from the center of the sphere along the line connecting the centers of the sphere and the cavity. Find the gravitational force on m.arrow_forwardAstronomical observations of our Milky Way galaxy indicate that it has a mass of about 8 ✕ 1011 solar masses. A star orbiting near the galaxy's periphery is 6.0 ✕ 104 light years from its center. (a) What should the orbital period (in y) of that star be? y (b) If its period is 6.9 ✕ 107 y instead, what is the mass (in solar masses) of the galaxy? Such calculations are used to imply the existence of "dark matter" in the universe and have indicated, for example, the existence of very massive black holes at the centers of some galaxies. solar massesarrow_forward(a) Imagine that a space probe could be fired as a projectile from the Earth's surface with an initial speed of 5.96 x 10“ m/s relative to the Sun. What would its speed be when it is very far from the Earth (in m/s)? Ignore atmospheric friction, the effects of other planets, and the rotation of the Earth. (Consider the mass of the Sun in your calculations.) 354790 Your response differs from the correct answer by more than 100%. m/s (b) What If? The speed provided in part (a) is very difficult to achieve technologically. Often, Jupiter is used as a "gravitational slingshot" to increase the speed of a probe to the escape speed from the solar system, which is 1.85 x 10“ m/s from a point on Jupiter's orbit around the Sun (if Jupiter is not nearby). If the probe is launched from the Earth's surface at a speed of 4.10 × 10“ m/s relative to the Sun, what is the increase in speed needed from the gravitational slingshot at Jupiter for the space probe to escape the solar system (in m/s)? (Assume…arrow_forward
- While standing on the surface of a spherical asteriod of mass M and radius R., and astronaut thows a small rock straight upward away from the center. What is the minimum speed she must give to the rock to reach a height h above the surface. Assume that h is not small compared to R. The asteriod has no atmosphere and take the rock's mass to be small compared to M.arrow_forwardAstronomical observations of our Milky Way galaxy indicate that it has a mass of about 8 ✕ 1011 solar masses. A star orbiting near the galaxy's periphery is 6.0✕ 104 light years from its center. (a) What should the orbital period (in y) of that star be? y (b) If its period is 5.1✕ 107 y instead, what is the mass (in solar masses) of the galaxy? Such calculations are used to imply the existence of "dark matter" in the universe and have indicated, for example, the existence of very massive black holes at the centers of some galaxies. solar massesarrow_forwardAstronomical observations of our Milky Way galaxy indicate that it has a mass of about 8.0 x 1011 solar masses. A star orbiting near the galaxy's periphery is 5.9 x 10* light-years from its center. (a) What should the orbital period (in y) of that star be? (b) If its period is 7.0 x 10' years instead, what is the mass (in solar masses) of the galaxy? Such calculations are used to imply the existence of other matter, such as a very massive black hole at the center of the Milky Way. solar massesarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning