Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 76P
To determine
The difference in the weight from the actual experimental result.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The radius Rhand mass Mh of a black hole are related by Rh = 2GMh/c2, where c is the speed of light. Assume that the gravitational acceleration agof an object at a distance ro= 1.001Rh from the center of a black hole is given by ag = G M / r2 (it is, for large black holes).
(a) What is ag at rofor a very large black hole whose mass is 1.69 × 1015 times the solar mass of 1.99 × 1030 kg?(b) If an astronaut with a height of 1.73 m is at rowith her feet toward this black hole, what is the difference in gravitational acceleration between her head and her feet ahead-afeet?
At the surface of a certain planet , the gravitational accceleration " g" has a magnitude of 16.0 m/s^2.
A 24.0 kg brass ball is transported to this planet , what is the mass of the brass ball on the earth and on the planet ? mEarth , mplanet = ?
and also what is the weight of the brass ball on the earth and on the planet
wearth , w planet =?
The radius Rhand mass Mh of a black hole are related by Rh = 2GMh/c2, where c is the speed of light. Assume that the gravitational acceleration agof an object at a distance ro= 1.001Rh from the center of a black hole is given by ag = G M / r2 (it is, for large black holes).(a) In terms of Mh, find ag at ro.(c) What is ag at rofor a very large black hole whose mass is 1.69 × 1015 times the solar mass of 1.99 × 1030 kg?(d) If an astronaut with a height of 1.73 m is at rowith her feet toward this black hole, what is the difference in gravitational acceleration between her head and her feet ahead-afeet?
Chapter 11 Solutions
Physics for Scientists and Engineers
Ch. 11 - Prob. 1PCh. 11 - Prob. 2PCh. 11 - Prob. 3PCh. 11 - Prob. 4PCh. 11 - Prob. 5PCh. 11 - Prob. 6PCh. 11 - Prob. 7PCh. 11 - Prob. 8PCh. 11 - Prob. 9PCh. 11 - Prob. 10P
Ch. 11 - Prob. 11PCh. 11 - Prob. 12PCh. 11 - Prob. 13PCh. 11 - Prob. 14PCh. 11 - Prob. 15PCh. 11 - Prob. 16PCh. 11 - Prob. 17PCh. 11 - Prob. 18PCh. 11 - Prob. 19PCh. 11 - Prob. 20PCh. 11 - Prob. 21PCh. 11 - Prob. 22PCh. 11 - Prob. 23PCh. 11 - Prob. 24PCh. 11 - Prob. 25PCh. 11 - Prob. 26PCh. 11 - Prob. 27PCh. 11 - Prob. 28PCh. 11 - Prob. 29PCh. 11 - Prob. 30PCh. 11 - Prob. 31PCh. 11 - Prob. 32PCh. 11 - Prob. 33PCh. 11 - Prob. 34PCh. 11 - Prob. 35PCh. 11 - Prob. 36PCh. 11 - Prob. 37PCh. 11 - Prob. 38PCh. 11 - Prob. 39PCh. 11 - Prob. 40PCh. 11 - Prob. 41PCh. 11 - Prob. 42PCh. 11 - Prob. 43PCh. 11 - Prob. 44PCh. 11 - Prob. 45PCh. 11 - Prob. 46PCh. 11 - Prob. 47PCh. 11 - Prob. 48PCh. 11 - Prob. 49PCh. 11 - Prob. 50PCh. 11 - Prob. 51PCh. 11 - Prob. 52PCh. 11 - Prob. 53PCh. 11 - Prob. 54PCh. 11 - Prob. 55PCh. 11 - Prob. 56PCh. 11 - Prob. 57PCh. 11 - Prob. 58PCh. 11 - Prob. 59PCh. 11 - Prob. 60PCh. 11 - Prob. 61PCh. 11 - Prob. 62PCh. 11 - Prob. 63PCh. 11 - Prob. 64PCh. 11 - Prob. 65PCh. 11 - Prob. 66PCh. 11 - Prob. 67PCh. 11 - Prob. 68PCh. 11 - Prob. 69PCh. 11 - Prob. 70PCh. 11 - Prob. 71PCh. 11 - Prob. 72PCh. 11 - Prob. 73PCh. 11 - Prob. 74PCh. 11 - Prob. 75PCh. 11 - Prob. 76PCh. 11 - Prob. 77PCh. 11 - Prob. 78PCh. 11 - Prob. 79PCh. 11 - Prob. 80PCh. 11 - Prob. 81PCh. 11 - Prob. 82PCh. 11 - Prob. 83PCh. 11 - Prob. 84PCh. 11 - Prob. 85PCh. 11 - Prob. 86PCh. 11 - Prob. 87PCh. 11 - Prob. 88PCh. 11 - Prob. 89PCh. 11 - Prob. 90PCh. 11 - Prob. 91PCh. 11 - Prob. 92PCh. 11 - Prob. 93PCh. 11 - Prob. 94PCh. 11 - Prob. 95PCh. 11 - Prob. 96PCh. 11 - Prob. 97PCh. 11 - Prob. 98PCh. 11 - Prob. 99PCh. 11 - Prob. 100PCh. 11 - Prob. 101PCh. 11 - Prob. 102PCh. 11 - Prob. 103PCh. 11 - Prob. 104PCh. 11 - Prob. 105PCh. 11 - Prob. 106PCh. 11 - Prob. 107P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Check Your Understanding By what factor must the radius change to reduce the orbital velocity of a satellite by one-half? By what factor would this change the period?arrow_forwardA space station, in the form of a wheel 120 m in diameter, rotates to provide an artificial gravity of 3.00 m/s2 for persons who walk around on the inner wall of the outer rim. Find the rate of the wheels rotation in revolutions per minute that will produce this effect.arrow_forwardFor many years, astronomer Percival Lowell searched for a Planet X that might explain some of the perturbations observed in the orbit of Uranus. These perturbations were later explained when the masses of the outer planets and planetoids, particularly Neptune, became better measured (Voyager 2). At the time, however, Lowell had proposed the existence of a Planet X that orbited the Sun with a mean distance of 43 AU. With what period would this Planet X orbit the Sun?arrow_forward
- The gravitational force exerted on an astronaut on the Earths surface is 650 N directed downward. When she is in the space station in orbit around the Earth, is the gravitational force on her (a) larger, (b) exactly the same, (c) smaller, (d) nearly but not exactly zero, or (e) exactly zero?arrow_forwardSuppose an alien civilization has a space station in circular orbit around its home planet. The stations orbital radius is twice the planets radius, (a) If an alien astronaut has weight w just before launch from the surface, will she be weightless when she reaches the station and floats inside of it? (b) If not, what will be the ratio of her weight in orbit to her weight on the planets surface?arrow_forwardCheck Your Understanding Galaxies are not single objects. How does the gravitiational force of one galaxy exerted on the “closer” stars of the other galaxy compare to those farther away? What effect would this have on the shape of the galaxies themselves?arrow_forward
- What is the orbital radius of an Earth satellite having a period of 1.00 h? (b) What is unreasonable about this result?arrow_forwardand from the 1o ^24 kg and (alcula le the force at granty between earth Thent i3 arbiting 40xlo17 m center of Earth. the mass of Earth the mars of the sutellite is 1.2x 10Gke a satellite 60Xarrow_forward1) The mass of Venus is 81.5% that of the earth, and its radius is 94.9% that of the earth. a) Compute the acceleration due to gravity on the surface of Venus from these data. b) If a rock weighs 75.0 N on earth, what would it weigh at the surface of Venus? Astronomical Datat Вody Mass (kg) Radius (m) Orbit radius (m) Orbital period 1.99 x 10 7.35 x 1022 3.30 X 10 4.87 x 104 5.97 x 1024 6.42 x 1023 1.90 X 107 5.68 X 106 8.68 X 103 1.02 x 10% 1.31 X 102 6.96 x 10 1.74 X 10 244 X 10 6.05 x 10 6.37 X 10 3.39 X 106 6.99 X 107 5.82 x 10 2.54 X 10 2.46 X 10 1.15 X 10 Sun 3.84 X 10 5.79 x 1010 1.08 x 101 1.50 x 10" 2.28 X 101 7.78 X 10" 143 X 1012 2.87 X 1012 4.50 X 1012 5.91 x 1012 Моon 27.3 d 88.0 d 224.7 d 365.3 d 687.0 d 11.86 y 29.45 y 84.02 y 164.8 y 247.9 y "Source: NASA (http://solarsystem.nasa.govplanets/). For each body, "radius" is its average radius and "orbit radius" is Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Plutot its average distance from the sun or (for the…arrow_forward
- Two planets P, and P, orbit around a star S in circular orbits with speeds v1 = 45.0 km/s, and v2 = 58.0 km/s respectively. (a) If the period of the first planet P, is 710 years what is the mass, in kg, of the star it orbits around? kg (b) Determine the orbital period, in years, of P2. yrarrow_forwardAstrology, that unlikely and vague pseudoscience, makes much of the position of the planets at the moment of birth. The only known force a planet exerts on earth is gravitational.(a) Calculate the gravitational force exerted on a 5.00 kg baby by a 110 kg father 0.200 m away at birth (assisting so he is close). N?(b) Calculate the force on the baby due to Jupiter if it is at its closest to the earth, some 6.29 ✕ 1011 m away, showing it to be comparable to that of the father. The mass of Jupiter is about 1.90 ✕ 1027 kg. Other objects in the room and the hospital building also exert similar gravitational forces. (Of course, there could be an unknown force acting, but scientists first need to be convinced that there is even an effect, much less that an unknown force causes it.) N?arrow_forwardAstrology, that unlikely and vague pseudoscience, makes much of the position of the planets at the moment of birth. The only known force a planet exerts on earth is gravitational. (a) Calculate the gravitational force exerted on a 3.00 kg baby by a 90 kg father 0.150 m away at birth (assisting so he is close). N (b) Calculate the force on the baby due to Jupiter if it is at its closest to the earth, some 6.29 × 1011 m away, showing it to be comparable to that of the father. The mass of Jupiter is about 1.90 × 1027 kg. Other objects in the room and the hospital building also exert similar gravitational forces. (Of course, there could be an unknown force acting, but scientists first need to be convinced that there is even an effect, much less that an unknown force causes it.) Additional Materials M Readingarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY