Concept explainers
Radius of the asteroid.
Answer to Problem 19P
Near about
Explanation of Solution
Introduction:
The escape velocity on the surface of the asteroid is
Here,
Relation among mass, density and volume is ,
The second
The escape velocity on the surface of the asteroid is
From the equation
The radius of the Asteroid is given by
From the kinematic equation of motion,
Here ‘h’ is the height to which you can jump on the surface of the Earth.
As finally come to rest, the final speed of you is
Therefore
Let
Therefore, the radius of the asteroid
Asssume that you can jump a height
Density of the asteroid is
Universal gravitational constant is
By substituting all known values in the equation
Radius of the asteroid is
Conclusion:
Radius of asteroid is
Want to see more full solutions like this?
Chapter 11 Solutions
Physics for Scientists and Engineers
- Show that the areal velocity for a circular orbit of radius r about a mass M is At=12GMr . Does your expression give the correct value for Earth’s areal vilocity about the Sun?arrow_forwardCalculate the effective gravitational field vector g at Earths surface at the poles and the equator. Take account of the difference in the equatorial (6378 km) and polar (6357 km) radius as well as the centrifugal force. How well does the result agree with the difference calculated with the result g = 9.780356[1 + 0.0052885 sin 2 0.0000059 sin2(2)]m/s2 where is the latitude?arrow_forwardA planet of density 1 (spherical core, radius R1) with a thick spherical cloud of dust (density 2, radius R2) is discovered. What is the force on a particle of mass m placed within the dust cloud?arrow_forward
- Check Your Understanding Earth exerts a tidal force on the Moon. Is it greater than, the same as, or less than that of the Moon on Earth? Be careful in your response, as tidal forces arise from the difference in gravitational forces between one side and the other. Look at the calculations we performed for the tidal force on Earth and consider the values that would change significantly for the Moon. The diameter of the Moon is one-fourth that of Earth. Tidal forces on the Moon are not easy to detect, since there is no liquid on the surface.arrow_forwardWhat is the orbital radius of an Earth satellite having a period of 1.00 h? (b) What is unreasonable about this result?arrow_forwardFollowing the technique used in Gravitation Near Earth’s Surface, find the value of g as a function of the radius r from the center of a spherical shell planet of constant density with inner and outer radii Rin and Rout . Find g for both eq and for RinrRout . Assuming the inside of the shell is kept airless, describe travel inside the spherical shell planet.arrow_forward
- Check Your Understanding The nearly circular orbit of Saturn has an average radius of about 9.5 AU and has a period of 30 years, whereas Uranus averages about 19 AU and has a period of 84 years. Is this consistent with our results for Halley’s comet?arrow_forwardOn a planet whose radius is 1.2107m , the acceleration due to gravity is 18m/s2 . What is the mass of the planet?arrow_forwardLet gM represent the difference in the gravitational fields produced by the Moon at the points on the Earths surface nearest to and farthest from the Moon. Find the fraction gM/g, where g is the Earths gravitational field. (This difference is responsible for the occurrence of the lunar tides on the Earth.)arrow_forward
- Check Your Understanding By what factor must the radius change to reduce the orbital velocity of a satellite by one-half? By what factor would this change the period?arrow_forwardThe Sun’s mass is 2.01030kg , its radius is 7.0105km , and it has a rotational period of approximately 28 days. If the Sun should collapse into a white dwarf of radius 3.5103km , what would its period be if no mass were ejected and a sphere of uniform density can model the Sun both before and after?arrow_forwardCalcuiate the escape velocity of a body at a height 1600 km above the surface of the earth. Radius of = 6400 km.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning