
University Physics Volume 3
17th Edition
ISBN: 9781938168185
Author: William Moebs, Jeff Sanny
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 83CP
Assuming a circular orbit for the Sun about the center of the Milky Way Galaxy, calculate its orbital speed using the following information: The mass of the galaxy is equivalent to a single mass
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A man pushing a crate of mass m = 92.0 kg at a speed of v = 0.845 m/s encounters a rough horizontal surface of length = 0.65 m as in the figure below. If the coefficient of kinetic friction between the crate and rough surface is 0.357 and he exerts a constant horizontal force of 294 N on
the crate.
e
(a) Find the magnitude and direction of the net force on the crate while it is on the rough surface.
magnitude
direction
---Select---
N
(b) Find the net work done on the crate while it is on the rough surface.
]
(c) Find the speed of the crate when it reaches the end of the rough surface.
m/s
Two blocks, A and B (with mass 45 kg and 120 kg, respectively), are connected by a string, as shown in the figure below. The pulley is frictionless and of negligible mass. The coefficient of kinetic friction between block A and the incline is μk = 0.26. Determine the change in the kinetic
energy of block A as it moves from to, a distance of 15 m up the incline (and block B drops downward a distance of 15 m) if the system starts from rest.
× J
37°
B
You are working for the Highway Department. In mountainous regions, highways sometimes include a runaway truck ramp, and you are asked to help with the design of such a ramp. A runaway truck ramp is often a lane of gravel adjacent to a long downhill section of roadway where trucks
with failing brakes may need assistance to stop. Working with your supervisor, you develop a worst-case scenario: a truck with a mass of 6.00 × 104 kg enters a runaway truck lane traveling at 34.1 m/s. Assume that the maximum constant value for safe acceleration of the truck is
-5.00 m/s². Any higher magnitude of acceleration increases the likelihood that semi-trailer rigs could jackknife. Your supervisor asks you to advise her on the required length (in m) of a runaway truck lane on a flat section of ground next to the roadway.
m
Chapter 11 Solutions
University Physics Volume 3
Ch. 11 - Check Your Understanding What is the baryon number...Ch. 11 - Check Your Understanding What is the lepton number...Ch. 11 - Check Your Understanding What is the strangeness...Ch. 11 - Check Your Understanding What is the baryon number...Ch. 11 - Check Your Understanding How much energy does an...Ch. 11 - Check Your Understanding A charged particle of a...Ch. 11 - Check Your Understanding Why is a symmetric...Ch. 11 - Check Your Understanding The light of a galaxy...Ch. 11 - Check Your Understanding Compare the abundance of...Ch. 11 - What are the four fundamental forces? Briefly...
Ch. 11 - Distinguish fermions and bosons using the concepts...Ch. 11 - List the quark and lepton families.Ch. 11 - Distinguish between elementary particles...Ch. 11 - What are six particle conservation laws? Briefly...Ch. 11 - In general, how do we determine if a particle...Ch. 11 - Why might the detection of panicle interaction...Ch. 11 - What are the six known quarks? Summarize their...Ch. 11 - What is the general quark composition of a baryon?...Ch. 11 - What evidence exists for the existence of quarks?Ch. 11 - Why do baryons with the same quark composition...Ch. 11 - Briefly compare the Van de Graaff accelerator,...Ch. 11 - Describe the basic components and function of...Ch. 11 - What are the subdetectors of the Compact Muon...Ch. 11 - What is the advantage of a colliding-beam...Ch. 11 - An electron appeals in the muon detectors of the...Ch. 11 - What is the Standard Model? Express your answer in...Ch. 11 - Draw a Feynman diagram to represents annihilation...Ch. 11 - What is the motivation behind grand unification...Ch. 11 - If a theory is developed that unifies all four...Ch. 11 - If the Higgs boson is discovered and found to have...Ch. 11 - One of the common decay modes of the is 0 is 0+p ....Ch. 11 - What is meant by cosmological expansion? Express...Ch. 11 - Describe the balloon analogy for cosmological...Ch. 11 - Distances to local galaxies are determined by...Ch. 11 - What is meant by a “cosmological model of the...Ch. 11 - Describe two pieces of evidence that support the...Ch. 11 - In what sense are we, as Newton once said, "a boy...Ch. 11 - If some unknown cause of redshift—such as light...Ch. 11 - In the past, many scientists believed the universe...Ch. 11 - How much energy is released when ail electron and...Ch. 11 - If 1.01030MeV of energy is released in the...Ch. 11 - When both an electron and a positron are at rest,...Ch. 11 - What is the total kinetic energy carried away by...Ch. 11 - Which of the following decays cannot occur because...Ch. 11 - Which of the following reactions cannot because...Ch. 11 - Identify one possible decay for each of the...Ch. 11 - Each of die following strong nuclear reactions is...Ch. 11 - Based on quark composition of a proton, show that...Ch. 11 - Based on the quark composition of a neutron, show...Ch. 11 - Argue that the quark composition given in Table...Ch. 11 - Mesons are fanned from the following combinations...Ch. 11 - Why can’t either set of quarks shown below form...Ch. 11 - Experimental results indicate an isolate particle...Ch. 11 - Express the decays np+e+vand pn+e++vin terms of...Ch. 11 - A charged particle in a 2.0-T magnetic field is...Ch. 11 - A proton track passes through a magnetic field...Ch. 11 - Derive the equation p = 0.3Br using the concepts...Ch. 11 - Assume that beam energy of an electron-positron...Ch. 11 - At full energy, protons in the 2.00-km-diameter...Ch. 11 - Suppose a Wcreated in a particle detector lives...Ch. 11 - What length track does a +traveling at 0.100c...Ch. 11 - The 3.20-km-lfmg SLAC produces a beam of 50.0-GcV...Ch. 11 - Using the Heisenberg uncertainly principle,...Ch. 11 - Use the Heisenberg uncertainly principle to...Ch. 11 - (a) The following decay is mediated by the...Ch. 11 - Assuming conservation of momentum, what is the...Ch. 11 - What is the wavelength of a 50-GeV electron, which...Ch. 11 - The primary decay mode for the negative pion is +v...Ch. 11 - Suppose you are designing a proton decay...Ch. 11 - If the speed of a distant galaxy is 0.99c, what is...Ch. 11 - The distance of a galaxy from our solar system is...Ch. 11 - If a galaxy is 153 Mpc away flora us, how fast do...Ch. 11 - On average, how far away are galaxies that are...Ch. 11 - Our solar system orbits the center of the Milky...Ch. 11 - (a) Wliat is the approximate velocity relative to...Ch. 11 - (a) Calculate the approximate age of the universe...Ch. 11 - The Andromeda Galaxy is the closest large galaxy...Ch. 11 - Show that the velocity of a star orbiting its...Ch. 11 - Experimental results suggest that a muon decays to...Ch. 11 - Each of the following reactions is missing a...Ch. 11 - Because of energy loss due to synchrotron...Ch. 11 - A proton and an antiproton collide head-on, with...Ch. 11 - When an electron and positron collide at the SLAC...Ch. 11 - The core of a star collapses during a supernova,...Ch. 11 - Using the solution from the previous problem, find...Ch. 11 - (a) What Hubble constant corresponds to an...Ch. 11 - Electrons and positions are collided in a circular...Ch. 11 - The intensity of cosmic ray radiation decreases...Ch. 11 - (a) Calculate the relativistic quantity...Ch. 11 - Plans for ail accelerator that produces a...Ch. 11 - In supei novae, neutrinos are produced in huge...Ch. 11 - Assuming a circular orbit for the Sun about the...Ch. 11 - (a) What is the approximate force of gravity on a...Ch. 11 - (a) A panicle and its antiparticle are at rest...Ch. 11 - The peak intensity of the CMBR occurs at a...Ch. 11 - (a) Use the Heisenberg uncertainty principle to...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Assume that genes, A and B are on the same chromosome and are 50 map units apart. An animal heterozygous at bot...
Campbell Biology (11th Edition)
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
Match the following examples of mutagens. Column A Column B ___a. A mutagen that is incorporated into DNA in pl...
Microbiology: An Introduction
5. When the phenotype of heterozygotes is intermediate between the phenotypes of the two homozygotes, this patt...
Biology: Life on Earth (11th Edition)
If someone at the other end of a room smokes a cigarette, you may breathe in some smoke. The movement of smoke ...
Campbell Essential Biology with Physiology (5th Edition)
Why is an endospore called a resting structure? Of what advantage is an endospore to a bacterial cell?
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A large cruise ship of mass 6.20 × 107 kg has a speed of 10.2 m/s at some instant. (a) What is the ship's kinetic energy at this time? ] (b) How much work is required to stop it? (Give the work done on the ship. Include the sign of the value in your answer.) ] (c) What is the magnitude of the constant force required to stop it as it undergoes a displacement of 3.10 km? Narrow_forwardA 7.80 g bullet is initially moving at 660 m/s just before it penetrates a block of wood to a depth of 6.20 cm. (a) What is the magnitude of the average frictional force (in N) that is exerted on the bullet while it is moving through the block of wood? Use work and energy considerations to obtain your answer. N (b) Assuming the frictional force is constant, how much time (in s) elapses between the moment the bullet enters the block of wood and the moment it stops moving? Sarrow_forwardPlease don't use Chatgpt will upvote and give handwritten solutionarrow_forward
- Two blocks, A and B (with mass 45 kg and 120 kg, respectively), are connected by a string, as shown in the figure below. The pulley is frictionless and of negligible mass. The coefficient of kinetic friction between block A and the incline is μk = 0.26. Determine the change in the kinetic energy of block A as it moves from to ①, a distance of 15 m up the incline (and block B drops downward a distance of 15 m) if the system starts from rest. ] 37° A © Barrow_forwardA skateboarder with his board can be modeled as a particle of mass 80.0 kg, located at his center of mass. As shown in the figure below, the skateboarder starts from rest in a crouching position at one lip of a half-pipe (point). On his descent, the skateboarder moves without friction so that his center of mass moves through one quarter of a circle of radius 6.20 m. i (a) Find his speed at the bottom of the half-pipe (point Ⓡ). m/s (b) Immediately after passing point Ⓑ, he stands up and raises his arms, lifting his center of mass and essentially "pumping" energy into the system. Next, the skateboarder glides upward with his center of mass moving in a quarter circle of radius 5.71 m, reaching point D. As he passes through point ①, the speed of the skateboarder is 5.37 m/s. How much chemical potential energy in the body of the skateboarder was converted to mechanical energy when he stood up at point Ⓑ? ] (c) How high above point ① does he rise? marrow_forwardA 31.0-kg child on a 3.00-m-long swing is released from rest when the ropes of the swing make an angle of 29.0° with the vertical. (a) Neglecting friction, find the child's speed at the lowest position. m/s (b) If the actual speed of the child at the lowest position is 2.40 m/s, what is the mechanical energy lost due to friction? ]arrow_forward
- A force acting on a particle moving in the xy plane is given by F = (2yî + x²), where F is in newtons and x and y are in meters. The particle moves from the origin to a final position having coordinates x = 5.60 m and y = 5.60 m, as shown in the figure below. y (m) B (x, y) x (m) (a) Calculate the work done by F on the particle as it moves along the purple path (0 Ⓐ©). ] (b) Calculate the work done by ♬ on the particle as it moves along the red path (0 BC). J (c) Is F conservative or nonconservative? ○ conservative nonconservativearrow_forwardA 3.5-kg block is pushed 2.9 m up a vertical wall with constant speed by a constant force of magnitude F applied at an angle of 0 = 30° with the horizontal, as shown in the figure below. If the coefficient of kinetic friction between block and wall is 0.30, determine the following. (a) the work done by F J (b) the work done by the force of gravity ] (c) the work done by the normal force between block and wall J (d) By how much does the gravitational potential energy increase during the block's motion? ]arrow_forwardPhysics different from a sea breeze from a land breezearrow_forward
- File Preview Design a capacitor for a special purpose. After graduating from medical school you and a friend take a three hour cruise to celebrate and end up stranded on an island. While looking for food, a spider falls on your friend giving them a heart attack. Recalling your physics, you realize you can build a make-shift defibrillator by constructing a capacitor from materials on the boat and charging it using the boat's battery. You know that the capacitor must hold 100 J of energy and be at 1000 V (fortunately this is an electric boat which has batteries that are 1000 V) to work. You decide to construct the capacitor by tightly sandwiching a single layer of Saran wrap between sheets of aluminum foil. You read the Saran wrap box and fortunately they tell you that it has a thickness 0.01 mm and dielectric constant of 2.3. The Saran wrap and foil are 40 cm wide and very long. How long is the final capacitor you build that saves your friend?arrow_forwardHow do I plot the force F in Matlba (of gravity pulling on the masses) versus spring displacement, and fit the data with a linear function to find the value for the spring constant. To get a linear fit, use polynomial order 1. Report the value of 'k' from the fit. What code is used?arrow_forwardOk im confused on this portion of the questions being asked. the first snip is the solution you gave which is correct. BUt now it is asking for this and im confused. The magnitude of the force F_11 is __________LB. The direction of the force F_11 is __________LB.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill