University Physics Volume 3
17th Edition
ISBN: 9781938168185
Author: William Moebs, Jeff Sanny
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 46P
A charged particle in a 2.0-T magnetic field is bent in a circle of radius 75 cm. What is the momentum of the particle?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Scientists working with a particle accelerator determine that an unknown particle has a speed of 1.35 ×108 m/s and a momentum of 2.52 × 10−19 kg m/s. From the curvature of the particle’s path in a magnetic field, they also deduce that it has a positive charge. Using this information, identify the particle.
A 3.25 µg particle moves at 2.09 x 10 m/s. What is its momentum p?
p =
kg-m/s
Pls asap
Chapter 11 Solutions
University Physics Volume 3
Ch. 11 - Check Your Understanding What is the baryon number...Ch. 11 - Check Your Understanding What is the lepton number...Ch. 11 - Check Your Understanding What is the strangeness...Ch. 11 - Check Your Understanding What is the baryon number...Ch. 11 - Check Your Understanding How much energy does an...Ch. 11 - Check Your Understanding A charged particle of a...Ch. 11 - Check Your Understanding Why is a symmetric...Ch. 11 - Check Your Understanding The light of a galaxy...Ch. 11 - Check Your Understanding Compare the abundance of...Ch. 11 - What are the four fundamental forces? Briefly...
Ch. 11 - Distinguish fermions and bosons using the concepts...Ch. 11 - List the quark and lepton families.Ch. 11 - Distinguish between elementary particles...Ch. 11 - What are six particle conservation laws? Briefly...Ch. 11 - In general, how do we determine if a particle...Ch. 11 - Why might the detection of panicle interaction...Ch. 11 - What are the six known quarks? Summarize their...Ch. 11 - What is the general quark composition of a baryon?...Ch. 11 - What evidence exists for the existence of quarks?Ch. 11 - Why do baryons with the same quark composition...Ch. 11 - Briefly compare the Van de Graaff accelerator,...Ch. 11 - Describe the basic components and function of...Ch. 11 - What are the subdetectors of the Compact Muon...Ch. 11 - What is the advantage of a colliding-beam...Ch. 11 - An electron appeals in the muon detectors of the...Ch. 11 - What is the Standard Model? Express your answer in...Ch. 11 - Draw a Feynman diagram to represents annihilation...Ch. 11 - What is the motivation behind grand unification...Ch. 11 - If a theory is developed that unifies all four...Ch. 11 - If the Higgs boson is discovered and found to have...Ch. 11 - One of the common decay modes of the is 0 is 0+p ....Ch. 11 - What is meant by cosmological expansion? Express...Ch. 11 - Describe the balloon analogy for cosmological...Ch. 11 - Distances to local galaxies are determined by...Ch. 11 - What is meant by a “cosmological model of the...Ch. 11 - Describe two pieces of evidence that support the...Ch. 11 - In what sense are we, as Newton once said, "a boy...Ch. 11 - If some unknown cause of redshift—such as light...Ch. 11 - In the past, many scientists believed the universe...Ch. 11 - How much energy is released when ail electron and...Ch. 11 - If 1.01030MeV of energy is released in the...Ch. 11 - When both an electron and a positron are at rest,...Ch. 11 - What is the total kinetic energy carried away by...Ch. 11 - Which of the following decays cannot occur because...Ch. 11 - Which of the following reactions cannot because...Ch. 11 - Identify one possible decay for each of the...Ch. 11 - Each of die following strong nuclear reactions is...Ch. 11 - Based on quark composition of a proton, show that...Ch. 11 - Based on the quark composition of a neutron, show...Ch. 11 - Argue that the quark composition given in Table...Ch. 11 - Mesons are fanned from the following combinations...Ch. 11 - Why can’t either set of quarks shown below form...Ch. 11 - Experimental results indicate an isolate particle...Ch. 11 - Express the decays np+e+vand pn+e++vin terms of...Ch. 11 - A charged particle in a 2.0-T magnetic field is...Ch. 11 - A proton track passes through a magnetic field...Ch. 11 - Derive the equation p = 0.3Br using the concepts...Ch. 11 - Assume that beam energy of an electron-positron...Ch. 11 - At full energy, protons in the 2.00-km-diameter...Ch. 11 - Suppose a Wcreated in a particle detector lives...Ch. 11 - What length track does a +traveling at 0.100c...Ch. 11 - The 3.20-km-lfmg SLAC produces a beam of 50.0-GcV...Ch. 11 - Using the Heisenberg uncertainly principle,...Ch. 11 - Use the Heisenberg uncertainly principle to...Ch. 11 - (a) The following decay is mediated by the...Ch. 11 - Assuming conservation of momentum, what is the...Ch. 11 - What is the wavelength of a 50-GeV electron, which...Ch. 11 - The primary decay mode for the negative pion is +v...Ch. 11 - Suppose you are designing a proton decay...Ch. 11 - If the speed of a distant galaxy is 0.99c, what is...Ch. 11 - The distance of a galaxy from our solar system is...Ch. 11 - If a galaxy is 153 Mpc away flora us, how fast do...Ch. 11 - On average, how far away are galaxies that are...Ch. 11 - Our solar system orbits the center of the Milky...Ch. 11 - (a) Wliat is the approximate velocity relative to...Ch. 11 - (a) Calculate the approximate age of the universe...Ch. 11 - The Andromeda Galaxy is the closest large galaxy...Ch. 11 - Show that the velocity of a star orbiting its...Ch. 11 - Experimental results suggest that a muon decays to...Ch. 11 - Each of the following reactions is missing a...Ch. 11 - Because of energy loss due to synchrotron...Ch. 11 - A proton and an antiproton collide head-on, with...Ch. 11 - When an electron and positron collide at the SLAC...Ch. 11 - The core of a star collapses during a supernova,...Ch. 11 - Using the solution from the previous problem, find...Ch. 11 - (a) What Hubble constant corresponds to an...Ch. 11 - Electrons and positions are collided in a circular...Ch. 11 - The intensity of cosmic ray radiation decreases...Ch. 11 - (a) Calculate the relativistic quantity...Ch. 11 - Plans for ail accelerator that produces a...Ch. 11 - In supei novae, neutrinos are produced in huge...Ch. 11 - Assuming a circular orbit for the Sun about the...Ch. 11 - (a) What is the approximate force of gravity on a...Ch. 11 - (a) A panicle and its antiparticle are at rest...Ch. 11 - The peak intensity of the CMBR occurs at a...Ch. 11 - (a) Use the Heisenberg uncertainty principle to...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Suppose you first walk 12.0 m in a direction 20° west of north and then 20.0 m in a direction 40.0° south of we...
College Physics
A physics student uses a 115.00-V immersion heater to heat 400.00 grams (almost two cups) of water for herbal t...
University Physics Volume 2
26. A 10 kg crate is placed on a horizontal conveyor belt. The materials are such that and .
a. Draw a free-...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
1. An object is subject to two forces that do not point in opposite directions. Is it possible to choose their ...
College Physics: A Strategic Approach (4th Edition)
1. a. Can a vector have nonzero magnitude if a component is zero? If no, why not? If yes, give an example.
b. C...
College Physics: A Strategic Approach (3rd Edition)
21. (II) (a) What is the electric potential 2.5 x 10-15m away from a proton (charge +e)? (b) What is the electr...
Physics: Principles with Applications
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) What is the momentum of a 2000 kg satellite orbiting at 4.00 km/s? (b) Find the ratio of this momentum to the classical momentum. (Hint: Use the approximation that =1+(1/2)v2/c2 at low velocities.)arrow_forward(a) What is the momentum of a 2000-kg satellite orbiting at 4.00 km/s? (b) Find the ratio of this momentum to the classical momentum. (Hint: Use the approximation that at low velocities.)arrow_forward(i) Does the speed of an electron have an upper limit? (a) yes, the speed of light c (b) yes, with another value (c) no (ii) Does the magnitude of an electrons momentum have an upper limit? (a) yes, mec (b) yes, with another value (c) no (iii) Does the electrons kinetic energy have an upper limit? (a) yes, mec2 (b) yes, 12mec2 (c) yes, with another value (d) noarrow_forward
- An observer in a rocket moves toward a mirror at speed v relative to the reference frame labeled by S in Figure P1.30. The mirror is stationary with respect to S. A light pulse emitted by the rocket travels toward the mirror and is reflected back to the rocket. The front of the rocket is a distance d from the mirror (as measured by observers in S) at the moment the light pulse leaves the rocket. What is the total travel time of the pulse as measured by observers in (a) the S frame and (b) the front of the rocket? Figure P1.30arrow_forwardA muon has a rest mass energy of 105.7 MeV, and it decays into an electron and a massless particle. (a) If all the lost mass is converted into the electron's kinetic energy, find for the electron. (b) What is the electron's velocity?arrow_forwardAn observer in a coasting spacecraft moves toward a mirror at speed v relative to the reference frame labeled S in Figure P39.85. The mirror is stationary with respect to S. A light pulse emitted by the spacecraft travels toward the mirror and is reflected back to the spacecraft. The spacecraft is a distance d from the mirror (as measured by observers in S) at the moment the light pulse leaves the spacecraft. What is the total travel time of the pulse as measured by observers in (a) the S frame and (b) the spacecraft?arrow_forward
- An object having mass 900 kg and traveling at speed 0.850c collides with a stationary object having mass 1 400 kg. The two objects stick together. Find (a) the speed and (b) the mass of the composite object.arrow_forwardWhat is the velocity of an electron that has a momentum of 3.041021kgm/s ? Note that you must calculate the velocity to at least four digits to see the difference from c.arrow_forwardA 1.0 g particle has momentum 400,000 kg • m/s. What is the particle’s speed?arrow_forward
- A spaceship has length 120 m, diameter 25 m, and mass 4.0 x 103 kg as measured by its crew. As the spaceship moves parallel to its cylindrical axis and passes us, we measure its length to be 90 m. (a) What do we measure its diameter to be? (b) What do we measure the magnitude of its momentum to be?arrow_forwardA spaceship has length 120 m, diameter 25 m, and mass 4.0 * 103 kg as measured by its crew. As the spaceship moves parallel to its cylindrical axis and passes us, we measure its length to be 90 m. (a) What do we measure its diameter to be? (b) What do we measure the magnitude of its momentum to be?arrow_forwardA thin empty frame is hung along side A (see figure). Side A is 1.19 m long and side B is 0.957 m long. Side C is hit by a bullet with a mass of 26.0 g, an initial velocity of 148.08 m/s and a final velocity of −118 m/s. Calculate the energy loss during the impact if the frame rotates frictionlessly around the z-axis and the frame's moment of inertia around this axis is 1,885 kg · m². Assume that the ball bounces straight back after the impact.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning