Concept explainers
The intensity of cosmic ray
(a) How many particles are created? (b) If the particles rain down on a 1.00-km2 area, how many particles are there per square meter?
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
University Physics Volume 3
Additional Science Textbook Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Campbell Essential Biology (7th Edition)
Biology: Life on Earth (11th Edition)
College Physics: A Strategic Approach (3rd Edition)
Human Anatomy & Physiology (2nd Edition)
Introductory Chemistry (6th Edition)
- What is for a proton having amass energy of 938.3 MeV accelerated through an effective potential of 1.0 TV (teravolt)?arrow_forwardSuppose you are designing a proton decay experiment and you can detect 50 percent of the proton decays in a tank of water. (a) How many kilograms of water would you need to see one decay per month, assuming a lifetime of 1031 y? (b) How many cubic meters of water is this? (c) If the actual lifetime is 1033 y, how long would you have to wait on an average to see a single proton decay?arrow_forwardIntegrated Concepts The intensity of cosmic ray radiation decreases rapidly with increasing energy, but there are occasionally extremely energetic cosmic rays that create a shower of radiation from all the particles they create by striking a nucleus in the atmosphere as seen in the figure given below. Suppose a cosmic ray particle having an energy of converts its energy into particles with masses averaging (a) How many particles are created? (b) If the particles rain down an a 1.00km2 area, how many particles are there per square meter? Figure 33.27 An extremely energetic cosmic ray creates a shower of particles on earth. The energy of these rare cosmic rays can approach a joule (about and, after multiple collisions, huge numbers of panicles are created from this energy. Cosmic ray showers have been observed to extend over many square kilometers.arrow_forward
- Energy reaches the upper atmosphere of the Earth from the Sun at the rate of 1.79 1017 W. If all of this energy were absorbed by the Earth and not re-emitted, how much would the mass of the Earth increase in 1.00 yr?arrow_forwardThe primary decay mode for the negative pion is +v . (a) What is the energy release in MeV in this decay? (b) Using conservation of momentum, how much energy does each of the decay products receive, given the is at rest when it decays? You may assume the muon antineutrino is massless and has momentum p = E/c , just like a photon.arrow_forwardWhat is for a proton having a mass energy of 938.3 MeV accelerated through an effective potential of 1.0 TV (teravolt) at Fermilab outside Chicago?arrow_forward
- (a) What is the kinetic energy in MeV of a ray that is traveling at 0.998c? This gives some idea of how energetic a ray must be to travel at nearly the same speed as a ray. (b) What is the velocity of the ray relative to the ray?arrow_forwardIn a nuclear power plain, the fuel rods last 3 yr before they are replaced. The plant can transform energy at a maximum possible rate of 1.00 GW. Supposing it operates at 80.0% capacity for 3.00 yr, what is the loss of mass of the fuel?arrow_forwardA meson is a particle that decays into a muon and a massless particle. The meson has a rest mass energy of 139.6 MeV, and the muon has a rest mass energy of 105.7 MeV. Suppose the meson is at rest and all of the missing mass goes into the muon's kinetic energy. How fast will the muon move?arrow_forward
- (a) Beta decay is nuclear decay in which an electron is emitted. If the electron is given 0.750 MeV of kinetic energy, what is its velocity? (b) Comment on how the high velocity is consistent with the kinetic energy as it compares to the rest mass energy of the electron.arrow_forwardSuppose you are designing a proton decay experiment and you can detect 50 percent of the proton decays in a tank of water. (a) How many kilograms of water would you need to see one decay per month, assuming a lifetime of 1031 y ?(b) How many cubic meters of water is this? (c) If the actual lifetime is 1033 y , how long would you have to wait on anaverage to see a single proton decay?arrow_forwardIf a muon at rest decays into an electron and two neutrinos, what is the total kinetic energy of the decay products? Assume that the neutrinos have zero rest mass. Express your answer in millions of electron volts to four significant figures.arrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning