One of the concerns about the use of Freons is that they will migrate to the upper atmosphere, where chlorine atoms can be generated by the following reaction:
Chlorine atoms can act as a catalyst for the destruction of ozone. The activation energy for the reaction
Cl(g) + O3(g) → ClO(g) + O2(g)
Is 2.1 kJ/mol. Which is the more effective catalyst for the destruction of ozone, Cl or NO? (See Exercise 75.)
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
Chemistry: An Atoms First Approach
- Bacteria cause milk to go sour by generating lactic acid. Devise an experiment that could measure the activation energy for the production of lactic acid by bacteria in milk. Describe how your experiment will provide the information you need to determine this value. What assumptions must be made about this reaction?arrow_forwardConsider this scenario and answer the following questions: Chlorine atoms resulting from decomposition of chloro?uoromethanes, such as CCI2F2, catalyze the decomposition of ozone in the atmosphere. One simplified mechanism for the decomposition is: O3sunlightO2+O O3+CIO2+CIO CIO+OCI+O2 (a) Explain why chlorine atoms are catalysts in the gas-phase transformation: 2O33O2 (b) Nitric oxide is also involved in the decomposition of ozone by the mechanism: O3sunlightO2+O O3+NONO2+O2 NO2+ONO+O2 Is NO a catalyst for the decomposition? Explain your answer.arrow_forwardOne of the concerns about the use of Freons is that they will migrate to the upper atmosphere, where chlorine atoms can be generated by the following reaction: CCl2F2(g)Freon-12hvCF2Cl(g)+Cl(g) Chlorine atoms can act as a catalyst for the destruction of ozone. The activation energy for the reaction Cl(g) + O3(g) ClO(g) + O2(g) Is 2.1 kJ/mol. Which is the more effective catalyst for the destruction of ozone, Cl or NO? (See Exercise 75.)arrow_forward
- Assuming that the mechanism for the hydrogenation of C2H4 given in Section 11-7 is correct, would you predict that the product of the reaction of C2H4. with D2 would be CH2DCH2D or CHD2CH3? How could the reaction of C2H4 with D2 be used to confirm the mechanism for the hydrogenation of C2H4 given in Section 11-7?arrow_forwardThe following rate constants were obtained in an experiment in which the decomposition of gaseous N2O; was studied as a function of temperature. The products were NO, and NO,. Temperature (K) 3.5 x 10_i 298 2.2 x 10"4 308 6.8 X IO-4 318 3.1 x 10 1 328 Determine Etfor this reaction in kj/mol.arrow_forwardHydrogen peroxide (H20i) decomposes into water and oxygen: H,O2(aq) — H,O(f) + ^O2(g) Ordinarily this reaction proceeds rather slowly, hut in the presence of some iodide ions (I-), the decomposition is much faster. Ihe decomposition in the presence of iodide was studied at 20°C, and the data were plotted in various ways. Use the graphs below to answer the questions that follow. What is the order of reaction for the decomposition of hydrogen peroxide? Find the numerical value of the rate constant at 20°C, including the correct units. Obtain an estimate of the initial rate of reaction in the experiment that produced the graphs (i.e., the rate at t = 0 in the graphs).arrow_forward
- Chlorine dioxide oxidizes iodide ion in aqueous solution to iodine; chlorine dioxide is reduced to chlorite ion. 2ClO2(aq)+2I(aq)2ClO2(aq)+I2(aq) The order of the reaction with respect to ClO2 was determined by starting with a large excess of I, so that its concentration was essentially constant. Then Rate=k[ClO2]m[I]n=k[ClO2]m where k= k[I]n. Determine the order with respect to ClO2 and the rate constant k by plotting the following data assuming first- and then second-order kinetics. [Data from H. Fukutomi and G. Gordon, J. Am. Chem. Soc., 89, 1362 (1967).] Time (s) [ClO2] (mol/L) 0.00 4.77 104 1.00 4.31 104 2.00 3.91 104 3.00 3.53 104 5.00 2.89 104 10.00 1.76 104 30.00 2.4 105 50.00 3.2 106arrow_forwardBased on the kinetic theory of matter, what would the action of a catalyst do to a reaction that is the reverse of some reaction that we say is catalyzed?arrow_forwardDefine stability from both a kinetic and thermodynamic perspective. Give examples to show the differences in these concepts.arrow_forward
- A popular chemical demonstration is the magic genie procedure, in which hydrogen peroxide decomposes to water and oxygen gas with the aid of a catalyst. The activation energy of this (uncatalyzed) reaction is 70.0 kJ/mol. When the catalyst is added, the activation energy (at 20.C) is 42.0 kJ/mol. Theoretically, to what temperature (C) would one have to heat the hydrogen peroxide solution so that the rate of the uncatalyzed reaction is equal to the rate of the catalyzed reaction at 20.C? Assume the frequency factor A is constant, and assume the initial concentrations are the same.arrow_forwardThe frequency factor A is 6.31 108 L mol1 s1 and the activation energy is 10. kJ/mol for the gas-phase reaction NO(g)+O3(g)NO2(g)+O2(g) which is important in the chemistry of stratospheric ozone depletion. (a) Calculate the rate constant for this reaction at 370. K. (b) Assuming that this is an elementary reaction, calculate the rate of the reaction at 370. K if [NO] = 0.0010 M and [O3] = 0.00050 M.arrow_forwardIn the presence of excess thiocyanate ion, SCN, the following reaction is first order in iron(III) ion, Fe3+; the rate constant is 1.27/s. Fe3+(aq)+SCN(aq)Fe(SCN)2+(aq) What is the half-life in seconds? How many seconds would be required for the initial concentration of Fe3+ to decrease to each of the following values: 25.0% left, 12.5% left, 6.25% left, 3.125% left? What is the relationship between these times and the half-life?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning