The decomposition of ethanol (C2H5OH) on an alumina (Al2O3) surface
was studied at 600 K. Concentration versus time data were collected for this reaction, and a plot of [A] versus time resulted in a straight line with a slope of −4.00 × 10−5 mol/L · s.
a. Determine the rate law, the integrated rate law, and the value of the rate constant for this reaction.
b. If the initial concentration of C2H5OH was 1.25 × 10−2 M, calculate the half-life for this reaction.
c. How much time is required for all the 1.25 × 10−2 M C2H5OH to decompose?
Trending nowThis is a popular solution!
Chapter 11 Solutions
Chemistry: An Atoms First Approach
- At 500 K in the presence of a copper surface, ethanol decomposes according to the equation C2H5OH(g)CH3CHO(g)+H2(g) The pressure of C2H5OH was measured as a function of time and the following data were obtained: Time(s) PC2H5OH(torr) 0 250. 100. 237 200. 224 300. 211 400. 198 500. 185 Since the pressure of a gas is directly proportional to the concentration of gas, we can express the rate law for a gaseous reaction in terms of partial pressures. Using the above data, deduce the rate law, the integrated rate law, and the value of the rate constant, all in terms of pressure units in atm and time in seconds. Predict the pressure of C2H5OH after 900. s from the start of the reaction. (Hint: To determine the order of the reaction with respect to C2H5OH, compare how the pressure of C2H5OH decreases with each time listing.)arrow_forwardAn excellent way to make highly pure nickel metal for use in specialized steel alloys is to decompose Ni(CO)4 by heating it in a vacuum to slightly above room temperature. Ni(CO)4(g) Ni(s) + 4 CO(g) The reaction is proposed to occur in four steps, the first of which is Ni(CO)4(g) Ni(CO)3(g) + CO(g) Kinetic studies of this first-order decomposition reaction have been carried out between 47.3 C and 66.0 C to give the results in the table. (a) Determine the activation energy for this reaction. (b) Ni(CO)4 is formed by the reaction of nickel metal with carbon monoxide. Suppose that 2.05 g CO is combined with 0.125 g nickel metal. Determine the maximum mass (g) of Ni(CO)4 that can be formed. Replacement of CO by another molecule in Ni(CO)4 was studied in the nonaqueous solvents toluene and hexane to understand the general principles that govern the chemistry of such compounds. Ni(CO)4(g) + P(CH3)3 Ni(CO)3P(CH3)3 + CO A detailed study of the kinetics of the reaction led to the mechanism Step1:(slow)Ni(CO)4Ni(CO)3+COStep2:(fast)Ni(CO)3+P(CH3)3Ni(CO)3P(CH3)3 (c) Which step in the mechanism is unimolecular? Which is bimolecular? (d) Add the steps of the mechanism to show that the result is the balanced equation for the observed reaction. (e) Is there an intermediate in this reaction? If so, what is it? (f) It was found that doubling the concentration of Ni(CO)4 increased the reaction rate by a factor of 2. Doubling the concentration of P(CH3)3 had no effect on the reaction rate. Based on this information, write the rate equation for the reaction. (g) Does the experimental rate equation support the proposed mechanism? Why or why not?arrow_forwardAt 573 K, gaseous NO2(g) decomposes, forming NO(g) and O2(g). If a vessel containing NO2(g) has an initial concentration of 1.9 102 mol/L, how long will it take for 75% of the NO2(g) to decompose? The decomposition of NO2(g) is second-order in the reactant and the rate constant for this reaction, at 573 K, is 1.1 L/mol s.arrow_forward
- Pure ozone decomposes slowly to oxygen, 2O33O2(g). Use the data provided in a graphical method and determine the order and rate constant of the reaction. Time (h) 0 2.0103 7.6103 1.00104 [O3](M) 1.00105 4.98106 2.07106 1.66106 Time (h) 1.23104 1.43104 1.70104 [O3](M) 1.39106 1.22106 1.05106arrow_forwardThe decomposition of iodoethane in the gas phase proceeds according to the following equation: C2H5I(g)C2H4(g)+HI(g) At 660. K, k = 7.2 104 sl; at 720. K, k = 1.7 102 sl. What is the value of the rate constant for this first-order decomposition at 325C? If the initial pressure of iodoethane is 894 torr at 245C, what is the pressure of iodoethane after three half-lives?arrow_forwardHydrogen peroxide, H2O2(aq), decomposes to H2O() and O2(g) in a reaction that is first-order in H2O2 and has a rate constant k = 1.06 103 min1 at a given temperature. (a) How long will it take for 15% of a sample of H2O2 to decompose? (b) How long will it take for 85% of the sample to decompose?arrow_forward
- Explain why half-lives are not normally used to describe reactions other than first order.arrow_forwardAssuming that the mechanism for the hydrogenation of C2H4 given in Section 11-7 is correct, would you predict that the product of the reaction of C2H4. with D2 would be CH2DCH2D or CHD2CH3? How could the reaction of C2H4 with D2 be used to confirm the mechanism for the hydrogenation of C2H4 given in Section 11-7?arrow_forwardDefine stability from both a kinetic and thermodynamic perspective. Give examples to show the differences in these concepts.arrow_forward
- Nitramide, NO2NH2, decomposes slowly in aqueous solution according to the following reaction: NO2NH2(aq) N2O(g) + H2O() The reaction follows the experimental rate law Rate=k[NO2NH2][H3O+] (a) What is the apparent order of the reaction in a pH buffered solution? (In a pH buffered solution, the concentration of H3O+ is a constant.) (b) Which of the following mechanisms is the most appropriate for the interpretation of this rate law? Explain. (Note that when writing the expression for K, the equilibrium constant, [H2O] is not involved. See Chapter 15.) Mechanism 1 NO2NH2K1N2O+H2O Mechanism 2 NO2NH2+H3O+k2k2NO2NH3++H2O(rapidequilibrium) NO2NH3+k3N2O+H3O+(rate-limitingstep) Mechanism 3 NO2NH2+H2Ok4k4NO2NH+H3O+(rapidequilibrium)NO2NHk5N2O+OH(rate-limitingstep)H3O++OHk62H2O(veryfastreaction) (c) Show the relationship between the experimentally observed rate constant, k, and the rate constants in the selected mechanism. (d) Based on the experimental rate law, will the reaction rate increase or decrease if the pH of the solution is increased?arrow_forwardHydrogen iodide decomposes when heated, forming H2(g) and I2(g). The rate law for this reaction is [HI]/t = k[HI]2. At 443C, k = 30. L/mol min. If the initial HI(g) concentration is 1.5 102 mol/L, what concentration of HI(g) will remain after 10. minutes?arrow_forwardAmmonia decomposes when heated according to the equation NH3(g) NH2(g) + H(g) The data in the table for this reaction were collected at a high temperature. Plot In [NH3] versus time and 1/[NH3] versus time. What is the order of this reaction with respect to NH3? Find the rate constant for the reaction from the slope.arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning