Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 64GP
A thin string is wrapped around a cylindrical hoop of radius R and mass M. One end of the string is fixed, and the hoop is allowed to fall vertically, starting from rest, as the string unwinds. (a) Determine the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a) A light, rigid rod of length l
=
= 1.00 m joins two particles, with masses m₁
4.00 kg and m₂
= 3.00 kg, at its ends. The combination rotates in the xy-plane about a pivot through the
center of the rod (see figure below). Determine the angular momentum of the system about the origin when the speed of each particle is 6.20 m/s. (Enter the magnitude to at least
two decimal places in kg · m²/s.)
magnitude
direction
m
M
X
kg m2/s
---Select---
(b) What If? What would be the new angular momentum of the system (in kg
least two decimal places.)
m²/s) if each of the masses were instead a solid sphere 11.0 cm in diameter? (Round your answer to at
kg.m
m²/s
A uniform solid disk of mass m = 3.06 kg and radiusr = 0.200 m rotates about a fixed axis perpendicular to its face with angular
frequency 6.08 rad/s.
(a) Calculate the magnitude of the angular momentum of the disk when the axis of rotation passes through its center of
mass.
kg m2/s
(b) What is the magnitude of the angular momentum when the axis of rotation passes through a point midway between
the center and the rim?
kg m2/s
At time t, the position of a point particle of mass m = 3 kg is given by
r = 4t^2i −(2t + 6t^2)jwhere r is in meters and t in seconds. (a) What is the angular momentum vector of the object at t = 5 s. (b) What is the torque vector acting on the object at t = 2
Chapter 11 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 11.1 - CONCEPTUAL EXAMPLE 115 Spinning bicycle wheel....Ch. 11.1 - CONCEPTUAL EXAMPLE 115 Spinning bicycle wheel....Ch. 11.1 - Suppose you are standing on the edge of a large...Ch. 11.2 - For the vectors A and B in the plane of the page...Ch. 11.2 - Prob. 1EECh. 11 - If there were a great migration of people toward...Ch. 11 - Can the diver of Fig. 112 do a somersault without...Ch. 11 - Suppose you are sitting on a rotating stool...Ch. 11 - When a motorcyclist leaves the ground on a jump...Ch. 11 - Suppose you are standing on the edge of a large...
Ch. 11 - A shortstop may leap into the air to catch a ball...Ch. 11 - If all the components of the vectors V1 and V2...Ch. 11 - Name the four different conditions that could make...Ch. 11 - A force F=Fj is applied to an object at a position...Ch. 11 - A particle moves with constant speed along a...Ch. 11 - If the net force on a system is zero, is the net...Ch. 11 - Explain how a child pumps on a swing to make it go...Ch. 11 - Describe the torque needed if the person in Fig....Ch. 11 - An astronaut floats freely in a weightless...Ch. 11 - On the basis of the law of conservation of angular...Ch. 11 - A wheel is rotating freely about a vertical axis...Ch. 11 - Consider the following vector quantities:...Ch. 11 - How does a car make a right turn? Where does the...Ch. 11 - The axis of the Earth processes with a period of...Ch. 11 - Why is it that at most locations on the Earth, a...Ch. 11 - In a rotating frame of reference. Newtons first...Ch. 11 - In the battle of the Falkland Islands in 1914, the...Ch. 11 - Wha is the anugular momentum of a 0.210-kg ball...Ch. 11 - (I) (a) What is the angular momentum of a 2.8-kg...Ch. 11 - (II) A person stands, hands at his side, on a...Ch. 11 - (II) A figure skater can increase her spin...Ch. 11 - (II) A diver (such as the one shown in Fig. 112)...Ch. 11 - (II) A uniform horizontal rod of mass M and length...Ch. 11 - (II) Determine the angular momentum of the...Ch. 11 - (II) (a) What is the angular momentum of a figure...Ch. 11 - (II) A person stands on a platform, initially at...Ch. 11 - (II) A uniform disk turns at 3.7 rev/s around a...Ch. 11 - (II) A person of mass 75 kg stands at the center...Ch. 11 - (II) A potters wheel is rotating around a vertical...Ch. 11 - (II) A 4.2-m-diameter merry-go-round is rotating...Ch. 11 - (II) A woman of mass m stands at the edge of a...Ch. 11 - (II) A nonrotating cylindrical disk of moment of...Ch. 11 - (II) Suppose our Sun eventually collapses into a...Ch. 11 - (III) Hurricanes can involve winds in excess of...Ch. 11 - (III) An asteroid of mass 1.0 105 kg, traveling...Ch. 11 - (III) Suppose a 65-kg person stands at the edge of...Ch. 11 - (I) If vector A points along the negative x axis...Ch. 11 - (I) Show that (a) i i = j j = k k = 0. (b) i j...Ch. 11 - (I) The directions of vectors A and B are given...Ch. 11 - (II) What is the angle between two vectorsA and...Ch. 11 - (II) A particle is located at r=(4.0i+3.5j+6.0k)m....Ch. 11 - (II) Consider a particle of a rigid object...Ch. 11 - (II) (a) Show that the cross product of two...Ch. 11 - (II) An engineer estimates that under the most...Ch. 11 - (II) The origin of a coordinate system is at the...Ch. 11 - (II) Use the result of Problem 26 to determine (a)...Ch. 11 - (III) Show that the velocity v of any point in an...Ch. 11 - (III) Let A,B, and Cbe three vectors, which for...Ch. 11 - (I) What are the x, y, and z components of the...Ch. 11 - (I) Show that the kinetic energy K of a particle...Ch. 11 - (I) Calculate the angular momentum of a particle...Ch. 11 - (II) Two identical particles have equal but...Ch. 11 - (II) Determine the angular momentum of a 75-g...Ch. 11 - (II) A particle is at the position (x, y, z) =...Ch. 11 - Prob. 38PCh. 11 - (II) Four identical particles of mass m are...Ch. 11 - (II) Two lightweight rods 24 cm in length are...Ch. 11 - (II) Figure 1135 shows two masses connected by a...Ch. 11 - (III) A thin rod of length and mass M rotates...Ch. 11 - (III) Show that the total angular momentum L=ripi...Ch. 11 - (III) What is the magnitude of the force F exerted...Ch. 11 - Prob. 45PCh. 11 - Prob. 46PCh. 11 - (II) A thin rod of mass M and length is suspended...Ch. 11 - (II) A uniform stick 1.0 m long with a total mass...Ch. 11 - (II) Suppose a 5.8 1010 kg meteorite struck the...Ch. 11 - (III) A 230-kg beam 2.7 m in length slides...Ch. 11 - (III) A thin rod of mass M and length rests on a...Ch. 11 - (III) On a level billiards table a cue ball,...Ch. 11 - (II) A 220-g top spinning at 15 rev/s makes an...Ch. 11 - (II) A toy gyroscope consists of a 170-g disk with...Ch. 11 - Prob. 55PCh. 11 - Prob. 56PCh. 11 - (II) A bicycle wheel of diameter 65 cm and mass m...Ch. 11 - Prob. 58PCh. 11 - Prob. 59PCh. 11 - (II) Suppose the man at B in Fig. 1126 throws the...Ch. 11 - (II) For what directions of velocity would the...Ch. 11 - (III) We can alter Eqs. 1114 and 1115 for use on...Ch. 11 - (III) An ant crawls with constant speed outward...Ch. 11 - A thin string is wrapped around a cylindrical hoop...Ch. 11 - A particle of mass 1.00 kg is moving with velocity...Ch. 11 - A merry-go-round with a moment of inertia equal to...Ch. 11 - Why might tall narrow SUVs and buses be prone to...Ch. 11 - A spherical asteroid with radius r = 123 m and...Ch. 11 - Prob. 69GPCh. 11 - The position of a particle with mass m traveling...Ch. 11 - A boy rolls a tire along a straight level street....Ch. 11 - A 70 kg person stands on a tiny rotating platform...Ch. 11 - Water drives a waterwheel (or turbine) of radius R...Ch. 11 - The Moon orbits the Earth such that the same side...Ch. 11 - A particle of mass m uniformly accelerates as...Ch. 11 - A projectile with mass m is launched from the...Ch. 11 - Most of our Solar Systems mass is contained in the...Ch. 11 - Prob. 78GPCh. 11 - Competitive ice skaters commonly perform single,...Ch. 11 - A radio transmission tower has a mass of 80 kg and...Ch. 11 - Suppose a star the size of our Sun, but with mass...Ch. 11 - A baseball bat has a sweet spot where a ball can...Ch. 11 - (II) A uniform stick 1.00 m long with a total mass...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology with Physiology (5th Edition)
Your bore cells, muscle cells, and skin cells look different because a. different kinds of genes are present in...
Campbell Essential Biology (7th Edition)
4. What five specific threats to biodiversity are described in this chapter? Provide an example of each.
Biology: Life on Earth (11th Edition)
MAKE CONNECTIONS Using what you know of gene expression in a cell, explain what causes the traits of parents (...
Campbell Biology (11th Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
Albinism in humans is inherited as a simple recessive trait. For the following families, determine the genotype...
Concepts of Genetics (12th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The position vector of a particle of mass 2.00 kg as a function of time is given by r=(6.00i+5.00tj), where r is in meters and t is in seconds. Determine the angular momentum of the particle about the origin as a function of time.arrow_forwardA thin rod of length 2.65 m and mass 13.7 kg is rotated at anangular speed of 3.89 rad/s around an axis perpendicular to therod and through its center of mass. Find the magnitude of therods angular momentum.arrow_forwardIf the torque acting on a particle about an axis through a certain origin is zero, what can you say about its angular momentum about that axis?arrow_forward
- The velocity of a particle of mass m = 2.00 kg is given by v= 5.10 + 2.40 m /s. What is the angular momentumof the particle around the origin when it is located atr= 8.60 3.70 m?arrow_forwardA uniform disk of mass m = 10.0 kg and radius r = 34.0 cm mounted on a frictionlessaxle through its center, and initially at rest, isacted upon by two tangential forces of equalmagnitude F, acting on opposite sides of itsrim until a point on the rim experiences acentripetal acceleration of 4.00 m/s2 (Fig.P13.73). a. What is the angular momentumof the disk at this time? b. If F = 2.00 N, howlong do the forces have to be applied to thedisk to achieve this centripetal acceleration? FIGURE P13.73arrow_forwardA wad of sticky clay with mass m and velocity vi is fired at a solid cylinder of mass M and radius R (Fig. P10.75). The cylinder is initially at rest and is mounted on a fixed horizontal axle that runs through its center of mass. The line of motion of the projectile is perpendicular to the axle and at a distance d R from the center. (a) Find the angular speed of the system just after the clay strikes and sticks to the surface of the cylinder. (b) Is the mechanical energy of the claycylinder system constant in this process? Explain your answer. (c) Is the momentum of the claycylinder system constant in this process? Explain your answer. Figure P10.75arrow_forward
- Two astronauts (Fig. P10.67), each having a mass M, are connected by a rope of length d having negligible mass. They are isolated in space, orbiting their center of mass at speeds v. Treating the astronauts as particles, calculate (a) the magnitude of the angular momentum of the two-astronaut system and (b) the rotational energy of the system. By pulling on the rope, one of the astronauts shortens the distance between them to d/2. (c) What is the new angular momentum of the system? (d) What are the astronauts new speeds? (e) What is the new rotational energy of the system? (f) How much chemical potential energy in the body of the astronaut was converted to mechanical energy in the system when he shortened the rope? Figure P10.67 Problems 67 and 68.arrow_forwardA buzzard (m = 9.29 kg) is flying in circular motion with aspeed of 8.44 m/s while viewing its meal below. If the radius ofthe buzzards circular motion is 8.00 m, what is the angularmomentum of the buzzardaround the center of its motion?arrow_forwardTwo astronauts (Fig. P10.67), each having a mass of 75.0 kg, are connected by a 10.0-m rope of negligible mass. They are isolated in space, orbiting their center of mass at speeds of 5.00 m/s. Treating the astronauts as particles, calculate (a) the magnitude of the angular momentum of the two-astronaut system and (b) the rotational energy of the system. By pulling on the rope, one astronaut shortens the distance between them to 5.00 m. (c) What is the new angular momentum of the system? (d) What are the astronauts new speeds? (e) What is the new rotational energy of the system? (f) How much chemical potential energy in the body of the astronaut was converted to mechanical energy in the system when he shortened the rope? Figure P10.67 Problems 67 and 68.arrow_forward
- Two particles of mass m1 = 2.00 kgand m2 = 5.00 kg are joined by a uniform massless rod of length = 2.00 m(Fig. P13.48). The system rotates in thexy plane about an axis through the midpoint of the rod in such a way that theparticles are moving with a speed of 3.00 m/s. What is the angular momentum of the system? FIGURE P13.48arrow_forwardA satellite is spinning at 6.0 rev/s. The satellite consists of a main body in the shape of a sphere of radius 2.0 m and mass 10,000 kg, and two antennas projecting out from the center of mass of the main body that can be approximated with rods of length 3.0 m each and mass 10 kg. The antenna’s lie in the plane of rotation. What is the angular momentum of the satellite?arrow_forwardIf you know the velocity of a particle, can you say anything about the particle’s angular momentum?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License