Concept explainers
Suppose a star the size of our Sun, but with mass 8.0 times as great, were rotating at a speed of 1.0 revolution every 9.0 days. If it were to undergo gravitational collapse to a neutron star of radius 12 km, losing
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
Physics for Scientists and Engineers with Modern Physics
Additional Science Textbook Solutions
Campbell Biology in Focus (2nd Edition)
Applications and Investigations in Earth Science (9th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Microbiology with Diseases by Body System (5th Edition)
Organic Chemistry (8th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
- Two stars of masses M and m, separated by a distance d, revolve in circular orbits about their center of mass (Fig. P11.50). Show that each star has a period given by T2=42d3G(M+m) Proceed as follows: Apply Newtons second law to each star. Note that the center-of-mass condition requires that Mr2 = mr1, where r1 + r2 = d.arrow_forwardThe Sun’s mass is 2.01030kg , its radius is 7.0105km , and it has a rotational period of approximately 28 days. If the Sun should collapse into a white dwarf of radius 3.5103km , what would its period be if no mass were ejected and a sphere of uniform density can model the Sun both before and after?arrow_forwardTwo planets X and Y travel counterclockwise in circular orbits about a star as shown in Figure P11.14. The radii of their orbits are in the ratio 3:1. At one moment, they are aligned as shown in Figure P11.14a, making a straight line with the star. During the next five years, the angular displacement of planet X is 90.0 as shown in Figure P11.14b. What is the angular displacement of planet Y at this moment?arrow_forward
- Consider a star the size of our Sun (RSun = 696,340 km) , but with a 9.0 times greater mass that rotates with a speed of 1.0 rev every 5 days. If this star underwent a gravitational collapse becoming a neutron star with a radius of 15 km and losing 2/3 of its mass in the process, find its new angular velocity.arrow_forwardA star with mass M and radius R collides head-on with another star of mass ¾*M and radius 4/5*R, and they coalesce to form a new start at rest whose radius is 6/5*R. Assume that initially the colliding stars had angular velocities with opposite directions but the same magnitude w. What is the magnitude and direction of the final’s stars angular velocity? (Express the magnitude as a fraction of w.)arrow_forwardA uniform, spherical cloud of interstellar gas has mass 1.8×1030 kg and radius 1.2×1013 m, and is rotating with period 1.5×106 years. If the cloud collapses to form a star 7.4×108 m in radius, what will be the star's rotation period?arrow_forward
- The rate at which a nebular cloud rotates increases as the cloud collapses to form systems of stars and planets. Consider a small segment of a nebular cloud with a mass m of 1.9 x 102' kg, tangential velocity vinitial equal to 6.8 km s located at an orbital distance rinitial = 2.5 x 104 km. After the cloud collapses, the same small segment is located at an orbital distance rfinal = 3.2 x 10³ km. Calculate the change of the rotational velocity, Aw, for the cloud segment, assuming perfectly circular orbits. Perform your work and report your solution using two significant figures. Δω rad s-1arrow_forwardA star has a mass of 1.03 x 1030 kg and is moving in a circular orbit about the center of its galaxy. The radius of the orbit is 2.4 x 104 light-years (1 light-year = 9.5 x 1015 m), and the angular speed of the star is 1.0 x 10-15 rad/s. (a) Determine the tangential speed of the star. (b) What is the magnitude of the net force that acts on the star to keep it moving around the center of the galaxy?arrow_forwardA pulsar is a rapidly rotating neutron star that emits radio pulses with precise synchronization, there being one such pulse for each rotation of the star, The period T of rotation is found by measuring the time between pulses. At present, the pulsar in the central region of the Crab nebula has a period of rotation of T D0.18000000 Sand this is observed to be increasing at the rate of 0.00000f6s s/y. What is the angular velocity of the star? San A Tries 0/40 What is the anqular acceleration of the pulsar? Suant ArTries 0/40 I ts anqular ecceleration is constant, in how many years will the pulsar stop rotating? an Tries 0/40 The puisar originated in a super-nova explosion in the year A.D 1054. What was the period of rotation of the pulsar when it was born? TheetAww Tries 0/40arrow_forward
- Answer the question in full details, thank you very much, Answer on the correct significant figures: A star of mass 1.87 x 10^31 kg and diameter 9.44 x 10^9 m rotates with a period of 26.0 days. Suddenly, the star changes size and rotates with a new period of 19.0 days. The mass of the star is conserved. Assuming a uniform (but different) density both before and after the size change, by what fraction doesits [diameter change? In other words, what is (new diameter)/(old diameter)?arrow_forwardThree identical stars, of mass M, are arranged along a straight line separated by a distance L. The two extreme stars revolve around the central star. a) What is the period of rotation of the stars that revolve around the central star?b) What is the mechanical energy E of the system?arrow_forwardSuppose that the Sun runs out of nuclear fuel and suddenly collapses to form a white dwarf star. The size shrinks and became as big as earth. Assuming that there is no loss in mass and it maintained to be a solid sphere, what would be the little white dwarf star's rotation period. The present rotation of the sun is about 25 days. Earth's radius = 6.37x10^6 Sun's radius = 6.96x10^8arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning