Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 44P
(III) What is the magnitude of the force
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
76. Round and Round Little Jay is
enjoying his first ride on a merry-go-
round. (He is riding a stationary
horse rather than one that goes up
Av at 4 = 0
%3D
and down.) A schematic view of the
merry-go-round as seen from above
is shown in Fig. 11-47a with a conve-
nient coordinate system. A bit after
the merry-go-round has started and
is going around uniformly, we start
our clock. Little Jay's position and
velocity at time t
dot and arrow. At t = 0 is the net force acting on Jay equal to zero?
If it is, write "Yes" and give a reason why you think so. If it isn't,
write “No" and specify the type of force and the object responsible
for exerting it.
FIGURE 11-47a
Problem 76.
0 are shown as a
%3D
%3D
For the next six parts, specify which of the graphs shown in
Fig. 11-47b could represent the indicated variable for Jay's motion.
If none of the graphs work, write "N."
(A
(B)
0.
-Time
Time
0.
(D)
0.
Time 0
Time
E
F
Time
Time
FIGURE 11-47b Problem 76.
(a) The x-component of Jay's velocity
(b)…
17-91.
The slender 12-kg bar has a clockwise angular velocity of
w = 2 rad/s when it is in the position shown. Determine its
angular acceleration and the normal reactions of the smooth
surface A and B at this instant.
3 m
60°
What do you understand by clockwise and anticlockwise moment of force? When is it taken positive?
Chapter 11 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 11.1 - CONCEPTUAL EXAMPLE 115 Spinning bicycle wheel....Ch. 11.1 - CONCEPTUAL EXAMPLE 115 Spinning bicycle wheel....Ch. 11.1 - Suppose you are standing on the edge of a large...Ch. 11.2 - For the vectors A and B in the plane of the page...Ch. 11.2 - Prob. 1EECh. 11 - If there were a great migration of people toward...Ch. 11 - Can the diver of Fig. 112 do a somersault without...Ch. 11 - Suppose you are sitting on a rotating stool...Ch. 11 - When a motorcyclist leaves the ground on a jump...Ch. 11 - Suppose you are standing on the edge of a large...
Ch. 11 - A shortstop may leap into the air to catch a ball...Ch. 11 - If all the components of the vectors V1 and V2...Ch. 11 - Name the four different conditions that could make...Ch. 11 - A force F=Fj is applied to an object at a position...Ch. 11 - A particle moves with constant speed along a...Ch. 11 - If the net force on a system is zero, is the net...Ch. 11 - Explain how a child pumps on a swing to make it go...Ch. 11 - Describe the torque needed if the person in Fig....Ch. 11 - An astronaut floats freely in a weightless...Ch. 11 - On the basis of the law of conservation of angular...Ch. 11 - A wheel is rotating freely about a vertical axis...Ch. 11 - Consider the following vector quantities:...Ch. 11 - How does a car make a right turn? Where does the...Ch. 11 - The axis of the Earth processes with a period of...Ch. 11 - Why is it that at most locations on the Earth, a...Ch. 11 - In a rotating frame of reference. Newtons first...Ch. 11 - In the battle of the Falkland Islands in 1914, the...Ch. 11 - Wha is the anugular momentum of a 0.210-kg ball...Ch. 11 - (I) (a) What is the angular momentum of a 2.8-kg...Ch. 11 - (II) A person stands, hands at his side, on a...Ch. 11 - (II) A figure skater can increase her spin...Ch. 11 - (II) A diver (such as the one shown in Fig. 112)...Ch. 11 - (II) A uniform horizontal rod of mass M and length...Ch. 11 - (II) Determine the angular momentum of the...Ch. 11 - (II) (a) What is the angular momentum of a figure...Ch. 11 - (II) A person stands on a platform, initially at...Ch. 11 - (II) A uniform disk turns at 3.7 rev/s around a...Ch. 11 - (II) A person of mass 75 kg stands at the center...Ch. 11 - (II) A potters wheel is rotating around a vertical...Ch. 11 - (II) A 4.2-m-diameter merry-go-round is rotating...Ch. 11 - (II) A woman of mass m stands at the edge of a...Ch. 11 - (II) A nonrotating cylindrical disk of moment of...Ch. 11 - (II) Suppose our Sun eventually collapses into a...Ch. 11 - (III) Hurricanes can involve winds in excess of...Ch. 11 - (III) An asteroid of mass 1.0 105 kg, traveling...Ch. 11 - (III) Suppose a 65-kg person stands at the edge of...Ch. 11 - (I) If vector A points along the negative x axis...Ch. 11 - (I) Show that (a) i i = j j = k k = 0. (b) i j...Ch. 11 - (I) The directions of vectors A and B are given...Ch. 11 - (II) What is the angle between two vectorsA and...Ch. 11 - (II) A particle is located at r=(4.0i+3.5j+6.0k)m....Ch. 11 - (II) Consider a particle of a rigid object...Ch. 11 - (II) (a) Show that the cross product of two...Ch. 11 - (II) An engineer estimates that under the most...Ch. 11 - (II) The origin of a coordinate system is at the...Ch. 11 - (II) Use the result of Problem 26 to determine (a)...Ch. 11 - (III) Show that the velocity v of any point in an...Ch. 11 - (III) Let A,B, and Cbe three vectors, which for...Ch. 11 - (I) What are the x, y, and z components of the...Ch. 11 - (I) Show that the kinetic energy K of a particle...Ch. 11 - (I) Calculate the angular momentum of a particle...Ch. 11 - (II) Two identical particles have equal but...Ch. 11 - (II) Determine the angular momentum of a 75-g...Ch. 11 - (II) A particle is at the position (x, y, z) =...Ch. 11 - Prob. 38PCh. 11 - (II) Four identical particles of mass m are...Ch. 11 - (II) Two lightweight rods 24 cm in length are...Ch. 11 - (II) Figure 1135 shows two masses connected by a...Ch. 11 - (III) A thin rod of length and mass M rotates...Ch. 11 - (III) Show that the total angular momentum L=ripi...Ch. 11 - (III) What is the magnitude of the force F exerted...Ch. 11 - Prob. 45PCh. 11 - Prob. 46PCh. 11 - (II) A thin rod of mass M and length is suspended...Ch. 11 - (II) A uniform stick 1.0 m long with a total mass...Ch. 11 - (II) Suppose a 5.8 1010 kg meteorite struck the...Ch. 11 - (III) A 230-kg beam 2.7 m in length slides...Ch. 11 - (III) A thin rod of mass M and length rests on a...Ch. 11 - (III) On a level billiards table a cue ball,...Ch. 11 - (II) A 220-g top spinning at 15 rev/s makes an...Ch. 11 - (II) A toy gyroscope consists of a 170-g disk with...Ch. 11 - Prob. 55PCh. 11 - Prob. 56PCh. 11 - (II) A bicycle wheel of diameter 65 cm and mass m...Ch. 11 - Prob. 58PCh. 11 - Prob. 59PCh. 11 - (II) Suppose the man at B in Fig. 1126 throws the...Ch. 11 - (II) For what directions of velocity would the...Ch. 11 - (III) We can alter Eqs. 1114 and 1115 for use on...Ch. 11 - (III) An ant crawls with constant speed outward...Ch. 11 - A thin string is wrapped around a cylindrical hoop...Ch. 11 - A particle of mass 1.00 kg is moving with velocity...Ch. 11 - A merry-go-round with a moment of inertia equal to...Ch. 11 - Why might tall narrow SUVs and buses be prone to...Ch. 11 - A spherical asteroid with radius r = 123 m and...Ch. 11 - Prob. 69GPCh. 11 - The position of a particle with mass m traveling...Ch. 11 - A boy rolls a tire along a straight level street....Ch. 11 - A 70 kg person stands on a tiny rotating platform...Ch. 11 - Water drives a waterwheel (or turbine) of radius R...Ch. 11 - The Moon orbits the Earth such that the same side...Ch. 11 - A particle of mass m uniformly accelerates as...Ch. 11 - A projectile with mass m is launched from the...Ch. 11 - Most of our Solar Systems mass is contained in the...Ch. 11 - Prob. 78GPCh. 11 - Competitive ice skaters commonly perform single,...Ch. 11 - A radio transmission tower has a mass of 80 kg and...Ch. 11 - Suppose a star the size of our Sun, but with mass...Ch. 11 - A baseball bat has a sweet spot where a ball can...Ch. 11 - (II) A uniform stick 1.00 m long with a total mass...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Why is petroleum jelly used in the hanging-drop procedure?
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
What general procedures are used to reduce microbial numbers (microbial load) in water supplies?
Brock Biology of Microorganisms (15th Edition)
Police Captain Jeffers has suffered a myocardial infarction. a. Explain to his (nonmedically oriented) family w...
Human Physiology: An Integrated Approach (8th Edition)
How is the periodic table organized?
Introductory Chemistry (6th Edition)
Show the steps in the synthesis of the tetrapeptide in Problem 34, using Merrifields method.
Organic Chemistry (8th Edition)
What type of cut would separate the brain into anterior and posterior parts?
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 21-70. The 1-lb top has a center of gravity at point G. If it spins about its axis of symmetry and precesses about the vertical axis at constant rates of w, = 60 rad/s and w, = 10 rad/s, respectively, determine the steady state angle 0. The radius of gyration of the top about the z axis is k. = 1 in., and about the x and y axes it is k, = k, = 4 in. w, = 10 rad/s w, = 60 rad/s 3 in.arrow_forwardA uniform rod of mass M and length l can pivot freely (i.e., we ignore friction) about a hinge attached to a wall, as in Fig. 8-63. The rod is held horizontally and then released. At the moment of release, determine (a) the angular acceleration of the rod, and (b) the linear acceleration of the tip of the rod. Assume that the force of gravity acts at the center of mass of the rod, as shown. [Hint: See Fig. 8–20g.] СМ FIGURE 8-63 Problem 89. Mỹarrow_forward(3) The 12-lb lever OA with 10-in. radius of gyration about point O is initially at rest in the vertical position (0 = 90°), where the attached spring of stiffness k= 3 lb/in is unstretched. Calculate the constant moment M applied to the lever at O which will give the lever an angular velocity o = 4 rad/sec as the lever rotates to the horizontal position at 0 = 0. k = 3 lb/in. ww 15" 15"arrow_forward
- 13. Why do tightrope walkers (Fig. 8–34) carry a long, rod? narrow FIGURE 8–34 Question 13.arrow_forward; Calculate the M. I. of thin uniform rod of mass 10 g and length 60 cm about an axis through its centre and perpendicular to its length.arrow_forwardFigure 9–38 shows a cone. Explain how to lay it on a flattable so that it is in (a) stable equilibrium, (b) unstableequilibrium, (c) neutral equilibriumarrow_forward
- The solid dot shown in Fig. 8–36 is a pivot point. The board can rotate about the pivot. Which force shown exerts the largest magnitude torque on the board? (e) 500 N • (d) 800 N (b) 500 N (c) 500 N (a) 1000 N FIGURE 8–36 MisConceptual Question 4.arrow_forwardPlease don't use Al solution and step-by-step solutionarrow_forward21-46. The assembly is supported by journal bearings at A and B, which develop only y and z force reactions on the shaft. Ifthe shaftis rotating in the direction shownato = {2i} rad/s, determine the reactions at the bearings when the assembly is in the position shown. Also, what is the shaft's angular acceleration? The mass per unit length of each rod is 5 kg/m. 1m 2 marrow_forward
- What convenience was secured by taking the fulcrum as the center of moments? (8-10 sentences)arrow_forward17-106. The truck carries the spool which has a weight of 500 Ib and a radius of gyration of kg = 2 ft. Determine the angular acceleration of the spool if it is not tied down on the truck and the truck begins to accelerate at 3 ft/s². Assume the spool does not slip on the bed of the truck.arrow_forwardn41 G0 In Fig. 10-37, two particles, each with mass m = 0.85 kg, are fas- tened to each other, and to a rotation axis at 0, by two thin rods, each with length d = 5.6 cm and mass M = 1.2 kg. The combination rotates M. Rotation axis around the rotation axis with the an- gular speed w = 0.30 rad/s. Measured about O, what are the combination's (a) rotational inertia and (b) kinetic energy? Figure 10-37 Problem 41.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Static Equilibrium: concept; Author: Jennifer Cash;https://www.youtube.com/watch?v=0BIgFKVnlBU;License: Standard YouTube License, CC-BY