Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Question
Chapter 11, Problem 45P
To determine
The forces at the upper and lower bearings.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
12–163. The car travels along the circular curve having a
radius r = 400 ft. At the instant shown, its angular rate of
rotation is ở = 0.025 rad/s, which is decreasing at the rate
ö = -0.008 rad/s². Determine the radial and transverse
components of the car's velocity and acceleration at this
instant and sketch these components on the curve.
*12–164. The car travels along the circular curve of radius
r = 400 ft with a constant speed of v = 30 ft/s. Determine
the angular rate of rotation ở of the radial line r and the
magnitude of the car's acceleration.
r= 400 ft
21-46. The assembly is supported by journal bearings at A
and B, which develop only y and z force reactions on the shaft.
Ifthe shaftis rotating in the direction shownato = {2i} rad/s,
determine the reactions at the bearings when the assembly is
in the position shown. Also, what is the shaft's angular
acceleration? The mass per unit length of each rod is 5 kg/m.
1m
2 m
(3) The 12-lb lever OA with 10-in. radius of
gyration about point O is initially at rest in
the vertical position (0 = 90°), where the
attached spring of stiffness k= 3 lb/in is
unstretched. Calculate the constant moment
M applied to the lever at O which will give
the lever an angular velocity o = 4 rad/sec
as the lever rotates to the horizontal position
at 0 = 0.
k = 3 lb/in.
ww
15"
15"
Chapter 11 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 11.1 - CONCEPTUAL EXAMPLE 115 Spinning bicycle wheel....Ch. 11.1 - CONCEPTUAL EXAMPLE 115 Spinning bicycle wheel....Ch. 11.1 - Suppose you are standing on the edge of a large...Ch. 11.2 - For the vectors A and B in the plane of the page...Ch. 11.2 - Prob. 1EECh. 11 - If there were a great migration of people toward...Ch. 11 - Can the diver of Fig. 112 do a somersault without...Ch. 11 - Suppose you are sitting on a rotating stool...Ch. 11 - When a motorcyclist leaves the ground on a jump...Ch. 11 - Suppose you are standing on the edge of a large...
Ch. 11 - A shortstop may leap into the air to catch a ball...Ch. 11 - If all the components of the vectors V1 and V2...Ch. 11 - Name the four different conditions that could make...Ch. 11 - A force F=Fj is applied to an object at a position...Ch. 11 - A particle moves with constant speed along a...Ch. 11 - If the net force on a system is zero, is the net...Ch. 11 - Explain how a child pumps on a swing to make it go...Ch. 11 - Describe the torque needed if the person in Fig....Ch. 11 - An astronaut floats freely in a weightless...Ch. 11 - On the basis of the law of conservation of angular...Ch. 11 - A wheel is rotating freely about a vertical axis...Ch. 11 - Consider the following vector quantities:...Ch. 11 - How does a car make a right turn? Where does the...Ch. 11 - The axis of the Earth processes with a period of...Ch. 11 - Why is it that at most locations on the Earth, a...Ch. 11 - In a rotating frame of reference. Newtons first...Ch. 11 - In the battle of the Falkland Islands in 1914, the...Ch. 11 - Wha is the anugular momentum of a 0.210-kg ball...Ch. 11 - (I) (a) What is the angular momentum of a 2.8-kg...Ch. 11 - (II) A person stands, hands at his side, on a...Ch. 11 - (II) A figure skater can increase her spin...Ch. 11 - (II) A diver (such as the one shown in Fig. 112)...Ch. 11 - (II) A uniform horizontal rod of mass M and length...Ch. 11 - (II) Determine the angular momentum of the...Ch. 11 - (II) (a) What is the angular momentum of a figure...Ch. 11 - (II) A person stands on a platform, initially at...Ch. 11 - (II) A uniform disk turns at 3.7 rev/s around a...Ch. 11 - (II) A person of mass 75 kg stands at the center...Ch. 11 - (II) A potters wheel is rotating around a vertical...Ch. 11 - (II) A 4.2-m-diameter merry-go-round is rotating...Ch. 11 - (II) A woman of mass m stands at the edge of a...Ch. 11 - (II) A nonrotating cylindrical disk of moment of...Ch. 11 - (II) Suppose our Sun eventually collapses into a...Ch. 11 - (III) Hurricanes can involve winds in excess of...Ch. 11 - (III) An asteroid of mass 1.0 105 kg, traveling...Ch. 11 - (III) Suppose a 65-kg person stands at the edge of...Ch. 11 - (I) If vector A points along the negative x axis...Ch. 11 - (I) Show that (a) i i = j j = k k = 0. (b) i j...Ch. 11 - (I) The directions of vectors A and B are given...Ch. 11 - (II) What is the angle between two vectorsA and...Ch. 11 - (II) A particle is located at r=(4.0i+3.5j+6.0k)m....Ch. 11 - (II) Consider a particle of a rigid object...Ch. 11 - (II) (a) Show that the cross product of two...Ch. 11 - (II) An engineer estimates that under the most...Ch. 11 - (II) The origin of a coordinate system is at the...Ch. 11 - (II) Use the result of Problem 26 to determine (a)...Ch. 11 - (III) Show that the velocity v of any point in an...Ch. 11 - (III) Let A,B, and Cbe three vectors, which for...Ch. 11 - (I) What are the x, y, and z components of the...Ch. 11 - (I) Show that the kinetic energy K of a particle...Ch. 11 - (I) Calculate the angular momentum of a particle...Ch. 11 - (II) Two identical particles have equal but...Ch. 11 - (II) Determine the angular momentum of a 75-g...Ch. 11 - (II) A particle is at the position (x, y, z) =...Ch. 11 - Prob. 38PCh. 11 - (II) Four identical particles of mass m are...Ch. 11 - (II) Two lightweight rods 24 cm in length are...Ch. 11 - (II) Figure 1135 shows two masses connected by a...Ch. 11 - (III) A thin rod of length and mass M rotates...Ch. 11 - (III) Show that the total angular momentum L=ripi...Ch. 11 - (III) What is the magnitude of the force F exerted...Ch. 11 - Prob. 45PCh. 11 - Prob. 46PCh. 11 - (II) A thin rod of mass M and length is suspended...Ch. 11 - (II) A uniform stick 1.0 m long with a total mass...Ch. 11 - (II) Suppose a 5.8 1010 kg meteorite struck the...Ch. 11 - (III) A 230-kg beam 2.7 m in length slides...Ch. 11 - (III) A thin rod of mass M and length rests on a...Ch. 11 - (III) On a level billiards table a cue ball,...Ch. 11 - (II) A 220-g top spinning at 15 rev/s makes an...Ch. 11 - (II) A toy gyroscope consists of a 170-g disk with...Ch. 11 - Prob. 55PCh. 11 - Prob. 56PCh. 11 - (II) A bicycle wheel of diameter 65 cm and mass m...Ch. 11 - Prob. 58PCh. 11 - Prob. 59PCh. 11 - (II) Suppose the man at B in Fig. 1126 throws the...Ch. 11 - (II) For what directions of velocity would the...Ch. 11 - (III) We can alter Eqs. 1114 and 1115 for use on...Ch. 11 - (III) An ant crawls with constant speed outward...Ch. 11 - A thin string is wrapped around a cylindrical hoop...Ch. 11 - A particle of mass 1.00 kg is moving with velocity...Ch. 11 - A merry-go-round with a moment of inertia equal to...Ch. 11 - Why might tall narrow SUVs and buses be prone to...Ch. 11 - A spherical asteroid with radius r = 123 m and...Ch. 11 - Prob. 69GPCh. 11 - The position of a particle with mass m traveling...Ch. 11 - A boy rolls a tire along a straight level street....Ch. 11 - A 70 kg person stands on a tiny rotating platform...Ch. 11 - Water drives a waterwheel (or turbine) of radius R...Ch. 11 - The Moon orbits the Earth such that the same side...Ch. 11 - A particle of mass m uniformly accelerates as...Ch. 11 - A projectile with mass m is launched from the...Ch. 11 - Most of our Solar Systems mass is contained in the...Ch. 11 - Prob. 78GPCh. 11 - Competitive ice skaters commonly perform single,...Ch. 11 - A radio transmission tower has a mass of 80 kg and...Ch. 11 - Suppose a star the size of our Sun, but with mass...Ch. 11 - A baseball bat has a sweet spot where a ball can...Ch. 11 - (II) A uniform stick 1.00 m long with a total mass...
Knowledge Booster
Similar questions
- (i) How much work must be done to stop it? rotating at 50 rad/s. It must be brought to stop in 10 s.arrow_forward20-41. At the instant shown, the arm AB is rotating about the fixed pin A with an angular velocity o = 4 rad/s and angular acceleration ở = 3 rad/s. At this same instant, rod BD is rotating relative to rod AB with an angular velocity wz =5 rad/s, which is increasing at w,=7 rad/s. Also, the collar Cis moving along rod BD with a velocity of 3 m/s and an acceleration of 2 m/s', both measured relative to the rod. Determine the velocity and acceleration of the collar at this instant. w = 4 rad/s in = 3 rad/s? 1.5 m 3 m/s 2 m/s2 w, = 5 rad/s iz = 7 rad/s? 0.6 marrow_forwardThe solid dot shown in Fig. 8–36 is a pivot point. The board can rotate about the pivot. Which force shown exerts the largest magnitude torque on the board? (e) 500 N • (d) 800 N (b) 500 N (c) 500 N (a) 1000 N FIGURE 8–36 MisConceptual Question 4.arrow_forward
- A uniform rod of mass M and length l can pivot freely (i.e., we ignore friction) about a hinge attached to a wall, as in Fig. 8-63. The rod is held horizontally and then released. At the moment of release, determine (a) the angular acceleration of the rod, and (b) the linear acceleration of the tip of the rod. Assume that the force of gravity acts at the center of mass of the rod, as shown. [Hint: See Fig. 8–20g.] СМ FIGURE 8-63 Problem 89. Mỹarrow_forwardn41 G0 In Fig. 10-37, two particles, each with mass m = 0.85 kg, are fas- tened to each other, and to a rotation axis at 0, by two thin rods, each with length d = 5.6 cm and mass M = 1.2 kg. The combination rotates M. Rotation axis around the rotation axis with the an- gular speed w = 0.30 rad/s. Measured about O, what are the combination's (a) rotational inertia and (b) kinetic energy? Figure 10-37 Problem 41.arrow_forward(II) Two masses, mA = 35.0 kg and mB = 38.0 kg, are connected by a rope that hangs over a pulley (as in Fig. 10-59). The pulley is a uniform cylinder of radius 0.381 m and mass 3.1 kg. Initially ma is on the ground and mB rests 2.5 m above the ground. If the system is released, use conservation of energy to deter- mine the speed of mB just before it strikes the ground. Assume the pulley bearing is frictionless. %3D RO mB mA 2.5 m FIGURE 10-59 ba Problem 67. inoni lo (IID) A.arrow_forward
- 21-70. The 1-lb top has a center of gravity at point G. If it spins about its axis of symmetry and precesses about the vertical axis at constant rates of w, = 60 rad/s and w, = 10 rad/s, respectively, determine the steady state angle 0. The radius of gyration of the top about the z axis is k. = 1 in., and about the x and y axes it is k, = k, = 4 in. w, = 10 rad/s w, = 60 rad/s 3 in.arrow_forwardPlease don't use Al solution and step-by-step solutionarrow_forward(2)Convert from radians to degrees 12n rad 5 12n rad 3 - - rad rad 5 2π rad - -arrow_forward
- (a) Let forces F =-i+j, F, = }, F, =-2î -4ĵ and F, = 21 are acting at 0(0,0), A(2,0), B(0,-2) and C(3,2) respectively. Find (i) torque of all forces about O. (ii) sum of torques of %3D all the forces about O. (iii) moment of all the forces about A, when no force is acting at A. (b) Find the Lagrange's equation of motion for a pendulum bob suspended with a rubber band. Ouestionarrow_forward18-37. The assembly consists of a 3-kg pulley A and 10-kg pulley B. If a 2-kg block is suspended from the cord, determine the distance the block must descend, starting from rest, in order to cause B to have an angular velocity of 6 rad/s. Neglect the mass of the cord and treat the pulleys as thin disks. No slipping occurs. 100 mm 30 mmarrow_forwardA 4.00-kg mass and a 3.00-kg mass are attached to opposite ends of a very light 42.0-cm-long horizontal rod (Fig. 8–61). The system is rotating at angular speed v = 5.60 rad/s about a vertical axle at the center of the rod. Determine (a) the kinetic energy KE of the system, and (b) the net force on each mass.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning