Two bumper cars at the county fair are sliding toward one another (Fig. P11.54). Initially, bumper car 1 is traveling to the east at 5.62 m/s, and bumper car 2 is traveling 60.0° south of west at 10.00 m/s. After they collide, bumper car 1 is observed to be traveling to the west with a speed of 3.14 m/s. Friction is negligible between the cars and the ground. a. If the masses of bumper cars 1 and 2 are 596 kg and 625 kg respectively, what is the velocity of bumper car 2 immediately after the collision? b. What is the kinetic energy lost in the collision?
FIGURE P11.54 Problems 54 and 55.
(a)
Velocity of bumper car 2 after collision.
Answer to Problem 54PQ
Velocity of bumper car 2 after collision is
Explanation of Solution
Positive x axis points to the east and the positive y axis points to the north. Apply law of conservation of momentum. The momentum of cars before collision must be equal to the momentum of cars after collision.
Here,
Elaborate equation (I) in terms of mass and velocity.
Here,
Apply the same condition of conservation of momentum in the y direction also. Here only car 2 travels in the y direction.
The initial total momentum in the y direction is equal to the final momentum in the y direction.
Here,
Elaborate equation (III) in terms of mass and velocity.
Here,
Write the equation to find the final velocity of second car.
Here,
Conclusion:
Substitute
Substitute
Substitute
Therefore, velocity of bumper car 2 after collision is
(b)
Kinetic energy lost during the collision.
Answer to Problem 54PQ
The kinetic energy lost is
Explanation of Solution
Write the equation to find the resultant final speed of car 2 after collision.
Here,
The kinetic energy lost is equal to the difference between the kinetic energy before collision and after collision.
Write the equation to find the kinetic energy lost.
Here,
Conclusion:
Substitute
Substitute
Therefore, the kinetic energy lost is
Want to see more full solutions like this?
Chapter 11 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forward
- look at answer show all work step by steparrow_forwardLook at the answer and please show all work step by steparrow_forward3. As a woman, who's eyes are h = 1.5 m above the ground, looks down the road sees a tree with height H = 9.0 m. Below the tree is what appears to be a reflection of the tree. The observation of this apparent reflection gives the illusion of water on the roadway. This effect is commonly called a mirage. Use the results of questions 1 and 2 and the principle of ray reversibility to analyze the diagram below. Assume that light leaving the top of the tree bends toward the horizontal until it just grazes ground level. After that, the ray bends upward eventually reaching the woman's eyes. The woman interprets this incoming light as if it came from an image of the tree. Determine the size, H', of the image. (Answer 8.8 m) please show all work step by steparrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning