Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11, Problem 16PQ
A truck collides with a small, empty parked car. Explain your answers to the parts below. a. Compare the force exerted by the truck on the car with the force exerted by the car on the truck. b. Compare the impulse exerted by the truck on the car with the impulse exerted by the car on the truck. c. Compare the change in the truck’s momentum with the change in the car’s momentum.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Answer the questions using the F vs. t graph showing the force of a bat on a baseball.
1. What is the impulse that the bat delivers to the baseball?
2. If the mass of the baseball is 0.15 kg and the initial velocity is 30 m/s to the left, what is the ball’s final velocity?
a) What impulse occurs when an average force of 10 N is exerted on a cart for 2.5 s? b. What change in momentum does the cart undergo? c. If the mass of the cart is 2 kg and the cart is initially at rest , calculate its final speed.
Chapter 11 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 11.1 - Forensic Science Forensic science is the...Ch. 11.2 - Why does a coach instruct a gymnast to bend her...Ch. 11.3 - When two objects collide, the impulse exerted on...Ch. 11.3 - Prob. 11.4CECh. 11.5 - If a spacecraft is headed for the outer solar...Ch. 11.6 - The cue ball hits the eight-ball in a game of pool...Ch. 11 - When a spacecraft collides with a planet, it is...Ch. 11 - When a person feels that he is about to fall, he...Ch. 11 - A tall man walking at 1.25 m/s accidentally bumps...Ch. 11 - Prob. 4PQ
Ch. 11 - A basketball of mass m = 625 g rolls off the hoops...Ch. 11 - Prob. 6PQCh. 11 - Sven hits a baseball (m = 0.15 kg). He applies an...Ch. 11 - Prob. 8PQCh. 11 - Prob. 9PQCh. 11 - In a laboratory, a cart collides with a wall and...Ch. 11 - Prob. 11PQCh. 11 - A Show that Equation 11.4 (the impulsemomentum...Ch. 11 - A crate of mass M is initially at rest on a level,...Ch. 11 - Prob. 14PQCh. 11 - Two pucks in a laboratory are placed on an air...Ch. 11 - A truck collides with a small, empty parked car....Ch. 11 - Prob. 17PQCh. 11 - Prob. 18PQCh. 11 - A skater of mass m standing on ice throws a stone...Ch. 11 - A skater of mass 45.0 kg standing on ice throws a...Ch. 11 - Prob. 21PQCh. 11 - In a laboratory experiment, 1 a block of mass M is...Ch. 11 - Ezra (m = 25.0 kg) has a tire swing and wants to...Ch. 11 - A suspicious physics student watches a stunt...Ch. 11 - A 2.45-kg ball is shot into a 0.450-kg box that is...Ch. 11 - Prob. 26PQCh. 11 - Prob. 27PQCh. 11 - Prob. 28PQCh. 11 - A dart of mass m is fired at and sticks into a...Ch. 11 - A dart of mass m = 10.0 g is fired at and sticks...Ch. 11 - A bullet of mass m = 8.00 g is fired into and...Ch. 11 - Prob. 32PQCh. 11 - A bullet of mass m is fired into a ballistic...Ch. 11 - Prob. 34PQCh. 11 - One object (m1 = 0.200 kg) is moving to the right...Ch. 11 - Prob. 36PQCh. 11 - Prob. 37PQCh. 11 - Prob. 38PQCh. 11 - Two objects collide head-on (Fig. P11.39). The...Ch. 11 - Initially, ball 1 rests on an incline of height h,...Ch. 11 - Initially, ball 1 rests on an incline of height h,...Ch. 11 - In an attempt to produce exotic new particles, a...Ch. 11 - Pendulum bob 1 has mass m1. It is displaced to...Ch. 11 - Prob. 44PQCh. 11 - Prob. 45PQCh. 11 - Prob. 46PQCh. 11 - Prob. 47PQCh. 11 - Prob. 48PQCh. 11 - Two skateboarders, with masses m1 = 75.0 kg and m2...Ch. 11 - In a laboratory experiment, an electron with a...Ch. 11 - In Figure P11.51, a cue ball is shot toward the...Ch. 11 - A proton with an initial speed of 2.00 108 m/s in...Ch. 11 - A football player of mass 95 kg is running at a...Ch. 11 - Two bumper cars at the county fair are sliding...Ch. 11 - Two bumper cars at the county fair are sliding...Ch. 11 - Prob. 56PQCh. 11 - N A bomb explodes into three pieces A, B, and C of...Ch. 11 - Prob. 58PQCh. 11 - An object of mass m = 4.00 kg that is moving with...Ch. 11 - A wooden block of mass M is initially at rest at...Ch. 11 - Prob. 61PQCh. 11 - Prob. 62PQCh. 11 - In an experiment designed to determine the...Ch. 11 - From what might be a possible scene in the comic...Ch. 11 - Prob. 65PQCh. 11 - Two pucks in a laboratory are placed on an air...Ch. 11 - Assume the pucks in Figure P11.66 stick together...Ch. 11 - Prob. 68PQCh. 11 - Prob. 69PQCh. 11 - A ball of mass 50.0 g is dropped from a height of...Ch. 11 - Prob. 71PQCh. 11 - A pendulum consists of a wooden bob of mass M...Ch. 11 - Three runaway train cars are moving on a...Ch. 11 - Prob. 74PQCh. 11 - Rutherford fired a beam of alpha particles (helium...Ch. 11 - Prob. 76PQCh. 11 - Prob. 77PQCh. 11 - February 3, 2009, was a very snowy day along...Ch. 11 - A cart filled with sand rolls at a speed of 1.0...Ch. 11 - Prob. 80PQCh. 11 - Prob. 81PQCh. 11 - Prob. 82PQCh. 11 - Prob. 83PQCh. 11 - Prob. 84PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You are coasting on your 10-kg bicycle at 15 m/s and a 5.0-g bug splatters on your helmet. The bug was initially moving at 2.0 m/s in the same direction as you. If your mass is 60 kg, (a) what is the initial momentum of you plus your bicycle? (b) What is the initial momentum of the bug? (c) What is your change in velocity due to the collision with the bug? (d) What would the change in velocity have been if the bug were traveling in the opposite direction?arrow_forwardA crate of mass M is initially at rest on a level, frictionless table. A small block of mass m (m M) moves toward the crate as shown in Figure P11.13. After the collision, the block sticks to the crate. Is the magnitude of the impulse exerted on the crate by the block greater than, less than, or equal to the magnitude of the impulse exerted on the block by the crate during the collision process? Explain. FIGURE P11.13arrow_forwardA car crashes into a large tree that does not move. The car goes from 30 m/s to 0 in 1.3 m. (a) What impulse is applied to the driver by the seatbelt, assuming he follows the same motion as the car? (b) What is the average force applied to the driver by the seatbelt?arrow_forward
- In a laboratory, a cart collides with a wall and bounces back. Figure P11.10 shows a graph of the force exerted by the wall versus time. a. Find the impulse exerted by the wall on the cart. b. What is the average force exerted by the wall on the cart? c. If the cart has a mass of 0.448 kg, what is its change in velocity? d. Make a sketch of the situation. Include a coordinate system and explain the significance of the signs in parts (a) through (c). FIGURE P11.10arrow_forward(a) What is the mass of a large ship that has a momentum of 1.60109kgm/s, when the ship is moving at a speed of 48.0 km/h? (b) Compare the ship's momentum to the momentum of a 1100-kg artillery shell fired at a speed of 1200 m/s.arrow_forwardA bomb, initially at rest, explodes into several pieces. (a) Is linear momentum of the system (the bomb before the explosion, the pieces after the explosion) conserved? Explain. (b) Is kinetic energy of the system conserved? Explain.arrow_forward
- A 65.0-kg boy and his 40.0-kg sister, both wearing roller blades, face each other at rest. The girl pushes the boy hard, sending him backward with velocity 2.90 m/s toward the west. Ignore friction. (a) Describe the subsequent motion of the girl. (b) How much potential energy in the girls body is converted into mechanical energy of the boygirl system? (c) Is the momentum of the boygirl system conserved in the pushing-apart process? If so, explain how that is possible considering (d) there are large forces acting and (e) there is no motion beforehand and plenty of motion afterward.arrow_forward(a) At what speed would a 2.00104 -kg airplane have to fly to have a momentum of 1.60109kgm/s (the same as the ship's momentum in the problem above)? (b) What is the plane's momentum when it is taking off at a speed of 60.0 m/s? (c) If the ship is an aircraft carrier that launches these airplanes with a catapult, discuss the implications of your answer to (b) as it relates to recoil effects of the catapult on the ship.arrow_forwardIn a head-on, inelastic collision, a 4,000-kg truck going 10 m/s east strikes a 1,000-kg car going 20 m/s west. (a) What is the speed and direction of the wreckage? (b) How much kinetic energy was lost in the Collision?arrow_forward
- An elephant and a hunter are having a confrontation. a. Calculate the momentum of the 2000.0-kg elephant charging the hunter at a speed of 7.50 m/s. b. Calculate the ratio of the elephant’s momentum to the momentum of a 0.0400-kg tranquilizer dart fired at a speed of 600 m/s. c. What is the momentum of the 90.0-kg hunter running at 7.40 m/s after missing the elephant?arrow_forwardThe x-component of a force on a 46-g golf ball by a 7-iron versus time is plotted in the following figure: Find the x-component of the impulse during the intervals i. [0,50ms] , and ii. [50ms,100ms] Find the change in the x-component of the momentum during the intervals iii. [0,50ms] , and iv. [50ms,100ms]arrow_forwardThe velocity of a 10-kg object is given by v=5t2i(7t+2t3)j, where if t is in seconds, then v will be in meters per second. a. What is the net force on the object as a function of time? b. What is the momentum of the object when t = 15.0 s?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Impulse Derivation and Demonstration; Author: Flipping Physics;https://www.youtube.com/watch?v=9rwkTnTOB0s;License: Standard YouTube License, CC-BY