
Chemistry
4th Edition
ISBN: 9780078021527
Author: Julia Burdge
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 11, Problem 3KSP
Interpretation Introduction
Interpretation:
The decreasing order of solubility in water of the given compounds
Concept introduction:
The various kinds of interactions that bind a molecule are known as intermolecular forces. These can be dispersion, dipole–dipole, ion–dipole, and hydrogen bonding.
The solubility of a compound depends on the intermolecular forces present. A polar solvent is soluble in a polar solvent only. A compound is soluble in water only when it is able to form hydrogen bonds with it.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
1. Consider the following molecular-level diagrams of a titration.
O-HA molecule
-Aion
°°
о
°
(a)
о
(b)
(c)
(d)
a. Which diagram best illustrates the microscopic representation for the
EQUIVALENCE POINT in a titration of a weak acid (HA) with sodium.
hydroxide?
(e)
Answers to the remaining 6 questions will be hand-drawn on paper and submitted as a single
file upload below:
Review of this week's reaction:
H₂NCN (cyanamide) + CH3NHCH2COOH (sarcosine) + NaCl, NH4OH, H₂O --->
H₂NC(=NH)N(CH3)CH2COOH (creatine)
Q7. Draw by hand the reaction of creatine synthesis listed above using line structures without showing
the Cs and some of the Hs, but include the lone pairs of electrons wherever they apply. (4 pts)
Q8. Considering the Zwitterion form of an amino acid, draw the Zwitterion form of Creatine. (2 pts)
Q9. Explain with drawing why the C-N bond shown in creatine structure below can or cannot rotate. (3
pts)
NH2(C=NH)-N(CH)CH2COOH
This bond
Q10. Draw two tautomers of creatine using line structures. (Note: this question is valid because problem
Q9 is valid). (4 pts)
Q11. Mechanism. After seeing and understanding the mechanism of creatine synthesis, students should
be ready to understand the first half of one of the Grignard reactions presented in a past…
Propose a synthesis pathway for the
following transformations. b) c) d)
Chapter 11 Solutions
Chemistry
Ch. 11.1 - Prob. 1PPACh. 11.1 - Prob. 1PPBCh. 11.1 - Prob. 1PPCCh. 11.1 - Prob. 1CPCh. 11.1 - Prob. 2CPCh. 11.2 - Prob. 1PPACh. 11.2 - Prob. 1PPBCh. 11.2 - Prob. 1PPCCh. 11.2 - Prob. 1CPCh. 11.2 - 11.2.2 Given the following information for ...
Ch. 11.2 - 11.2.3 Using the graph, estimate the vapor...Ch. 11.2 - Using the result from question 11.2.3 and another...Ch. 11.3 - Practice ProblemATTEMPT When silver crystallizes,...Ch. 11.3 - Practice Problem BUILD
The density of sodium metal...Ch. 11.3 - Practice Problem CONCEPTUALIZE The diagram shows...Ch. 11.3 - 11.3.1 Nickel has a face-centered cubic unit cell...Ch. 11.3 - A metal crystalizes in a body-centered cubic unit...Ch. 11.4 - Prob. 1PPACh. 11.4 - Prob. 1PPBCh. 11.4 - Prob. 1PPCCh. 11.4 - 11.4.1 The diagram here shows the anions in the...Ch. 11.4 - 11.4.2 At what angle would you expect X rays of...Ch. 11.5 - Practice ProblemATTEMPT LiF has the same unit cell...Ch. 11.5 - Practice ProblemBUILD NiO also adopts the...Ch. 11.5 - Practice ProblemCONCEPTUALIZE Referring to the...Ch. 11.6 - Practice Problem ATTEMPT
Aluminum metal...Ch. 11.6 - Practice Problem BUILD
Copper crystallizes in a...Ch. 11.6 - Prob. 1PPCCh. 11.6 - 11.6.1 How much energy (in kJ) is required to...Ch. 11.6 - 11.6.2 How much energy (in kJ) is given off when...Ch. 11.7 - Practice ProblemATTEMPT Calculate the amount of...Ch. 11.7 - Practice ProblemBUILD Determine the final state...Ch. 11.7 - Prob. 1PPCCh. 11.7 - Prob. 1CPCh. 11.7 - Prob. 2CPCh. 11.8 - Prob. 1PPACh. 11.8 - Practice Problem BUILD
Sketch the phase diagram of...Ch. 11.8 - Prob. 1PPCCh. 11 - Which of the following would you expect to be more...Ch. 11 - 11.2
Which of the following would you expect to be...Ch. 11 - Prob. 3KSPCh. 11 - Prob. 4KSPCh. 11 - Give an example for each type of intermolecular...Ch. 11 - 11.2 Explain the term polarizability. What kind of...Ch. 11 - Prob. 3QPCh. 11 - Prob. 4QPCh. 11 - 11.5 What physical properties are determined by...Ch. 11 - Prob. 6QPCh. 11 - Describe the types of intermolecular forces that...Ch. 11 - Prob. 8QPCh. 11 - Prob. 9QPCh. 11 - The binary hydrogen compounds of the Group 4A...Ch. 11 - 11.11 List the types of intermolecular forces that...Ch. 11 - Prob. 12QPCh. 11 - Prob. 13QPCh. 11 - Arrange the following in order of increasing...Ch. 11 - Diethyl ether has a boiling point of 34 .5°C , and...Ch. 11 - 11.16 Which member of each of the following pairs...Ch. 11 - Prob. 17QPCh. 11 - Explain in terms of intermolecular forces why (a)...Ch. 11 - What kind of attractive forces must be overcome to...Ch. 11 - Prob. 20QPCh. 11 - Prob. 21QPCh. 11 - Explain why liquids, unlike gases, are virtually...Ch. 11 - 11.23 What is surface tension? What is the...Ch. 11 - Prob. 24QPCh. 11 - Prob. 25QPCh. 11 - 11.26 A glass can be filled slightly above the rim...Ch. 11 - 11.27 Draw diagrams showing the capillary action...Ch. 11 - Prob. 28QPCh. 11 - Why does the viscosity of a liquid decrease with...Ch. 11 - Why is ice less dense than water?Ch. 11 - 11.31 Outdoor water pipes have to be drained or...Ch. 11 - Prob. 32QPCh. 11 - Prob. 33QPCh. 11 - Prob. 34QPCh. 11 - Predict the viscosity of ethylene glycol relative...Ch. 11 - 11.36 Vapor pressure measurements at several...Ch. 11 - The vapor pressure of liquid X is lower than that...Ch. 11 - 11.38 Define the following terms: crystalline...Ch. 11 - Describe the geometries of the following cubic...Ch. 11 - Classify the solid states in terms of crystal...Ch. 11 - The melting points of the oxides of the...Ch. 11 - Define X-ray diffraction. What are the typical...Ch. 11 - 11.43 Write the Bragg equation. Define every term...Ch. 11 - 11.44 What is the coordination number of each...Ch. 11 - Calculate the number of spheres that would be...Ch. 11 - Metallic iron crystallizes in a cubic lattice. The...Ch. 11 - Barium metal crystallizes in a body-centered cubic...Ch. 11 - 11.48 Vanadium crystallizes in a body-centered...Ch. 11 - Europium crystallizes in a body-centered cubic...Ch. 11 - 11.50 Crystalline silicon has a cubic structure....Ch. 11 - 11.51 A face-centered cubic cell contains 8 X...Ch. 11 - When X rays of wavelength 0.090 nm are diffracted...Ch. 11 - The distance between layers in an NaCl crystal is...Ch. 11 - Identify the unit cell of molecular iodine ( I 2 )...Ch. 11 - Shown here is a zinc oxide unit cell. What is the...Ch. 11 - Prob. 56QPCh. 11 - Prob. 57QPCh. 11 - A solid is hard, brittle, and electrically...Ch. 11 - A solid is soft and has a low melting point (below...Ch. 11 - Prob. 60QPCh. 11 - 11.61 Which of the following are molecular solids...Ch. 11 - Classify the solid state of the following...Ch. 11 - Prob. 63QPCh. 11 - Prob. 64QPCh. 11 - Define glass. What is the chief component of...Ch. 11 - 11.66 What is a phase change? Name all possible...Ch. 11 - What is the equilibrium vapor pressure of a...Ch. 11 - Use any one of the phase changes to explain what...Ch. 11 - 11.69 Define the following terms: (a) molar heat...Ch. 11 - How is the molar heat of sublimation related to...Ch. 11 - What can we learn about the intermolecular forces...Ch. 11 - The greater the molar heat of vaporization of a...Ch. 11 - Prob. 73QPCh. 11 - As a liquid is heated at constant pressure, its...Ch. 11 - What is critical temperature? What is the...Ch. 11 - Prob. 76QPCh. 11 - 11.77 How do the boiling points and melting points...Ch. 11 - Prob. 78QPCh. 11 - The vapor pressure of a liquid in a closed...Ch. 11 - Wet clothes dry more quickly on a hot, dry day...Ch. 11 - Which of the following phase transitions gives off...Ch. 11 - 11.82 A beaker of water is heated to boiling by a...Ch. 11 - Prob. 83QPCh. 11 - Calculate the amount of heat (in kJ) required to...Ch. 11 - Prob. 85QPCh. 11 - The molar heats of fusion and sublimation of...Ch. 11 - How is the rate of evaporation of a liquid...Ch. 11 - 11.88 The following compounds, listed with their...Ch. 11 - Prob. 89QPCh. 11 - A student hangs wet clothes outdoors on a winter...Ch. 11 - Explain why steam at 100°C causes more serious...Ch. 11 - What is a phase diagram? What useful information...Ch. 11 - 11.93 Explain how water’s phase diagram differs...Ch. 11 - The blades of ice skates are quite thin, so the...Ch. 11 - 11.95 A length of wire is placed on top of a block...Ch. 11 - Prob. 96QPCh. 11 - Prob. 97QPCh. 11 - 11.98 Name the kinds of attractive forces that...Ch. 11 - Prob. 99APCh. 11 - At –35°C , liquid HI has a higher vapor pressure...Ch. 11 - Prob. 101APCh. 11 - Prob. 102APCh. 11 - Prob. 103APCh. 11 - Prob. 104APCh. 11 - Prob. 105APCh. 11 - A CO 2 fire extinguisher is located on the outside...Ch. 11 - Prob. 107APCh. 11 - A flask of water is connected to a powerful vacuum...Ch. 11 - Prob. 109APCh. 11 - The interionic distances of several alkali halide...Ch. 11 - Which has a greater density, crystalline Si O 2 or...Ch. 11 - A student is given four solid samples labeled W,...Ch. 11 - Prob. 113APCh. 11 - Prob. 114APCh. 11 - X rays of wavelength 0.154 nm strike an aluminum...Ch. 11 - 11.116 The properties of gases, liquids, and...Ch. 11 - Prob. 117APCh. 11 - Prob. 118APCh. 11 - Prob. 119APCh. 11 - Prob. 120APCh. 11 - Prob. 121APCh. 11 - 11.122 The distance between and is 257 pm in...Ch. 11 - Prob. 123APCh. 11 - Prob. 124APCh. 11 - 11.125 Calculate the for the following processes...Ch. 11 - 11.126 Which liquid would you expect to have a...Ch. 11 - 11.127 A beaker of water is placed in a closed...Ch. 11 - Prob. 128APCh. 11 - Prob. 129APCh. 11 - Carbon and silicon belong to Group 4A of the...Ch. 11 - Prob. 131APCh. 11 - Prob. 132APCh. 11 - Prob. 133APCh. 11 - Prob. 134APCh. 11 - Prob. 135APCh. 11 - Prob. 136APCh. 11 - Prob. 137APCh. 11 - Prob. 138APCh. 11 - Prob. 139APCh. 11 - 11.140 Sketch the cooling curves of water from...Ch. 11 - Prob. 141APCh. 11 - Prob. 142APCh. 11 - A closed vessel of volume 9.6 L contains 2.0 g of...Ch. 11 - 11.144 The electrical conductance of copper metal...Ch. 11 - 11.145 Assuming ideal behavior, calculate the...Ch. 11 - Prob. 146APCh. 11 - Which of the following compounds is most likely to...Ch. 11 - 11.148 A chemistry instructor performed the...Ch. 11 - Prob. 149APCh. 11 - Prob. 150APCh. 11 - The phase diagram of helium is shown. Helium is...Ch. 11 - 11.152 The phase diagram of sulfur is shown. (a)...Ch. 11 - Prob. 153APCh. 11 - Prob. 154APCh. 11 - Prob. 155APCh. 11 - Prob. 156APCh. 11 - Prob. 157APCh. 11 - Prob. 158APCh. 11 - 11.159 Why do citrus growers spray their trees...Ch. 11 - Prob. 2SEPPCh. 11 - 3. Each cubic unit cell (edge length a = 543 pm)...
Knowledge Booster
Similar questions
- The rate coefficient of the gas-phase reaction 2 NO2 + O3 → N2O5 + O2 is 2.0x104 mol–1 dm3 s–1 at 300 K. Indicate whether the order of the reaction is 0, 1, or 2.arrow_forward8. Draw all the resonance forms for each of the following molecules or ions, and indicate the major contributor in each case, or if they are equivalent. (4.5 pts) (a) PH2 سمةarrow_forward3. Assign absolute configuration (Rors) to each chirality center. a. H Nitz C. он b. 0 H-C. C H 7 C. ་-4 917-417 refs H 1つ ८ ડુ d. Но f. -2- 01 Ho -OH 2HNarrow_forward
- How many signals do you expect in the H NMR spectrum for this molecule? Br Br Write the answer below. Also, in each of the drawing areas below is a copy of the molecule, with Hs shown. In each copy, one of the H atoms is colored red. Highlight in red all other H atoms that would contribute to the same signal as the H already highlighted red. Note for advanced students: In this question, any multiplet is counted as one signal. Number of signals in the 'H NMR spectrum. For the molecule in the top drawing area, highlight in red any other H atoms that will contribute to the same signal as the H atom already highlighted red. If no other H atoms will contribute, check the box at right. No additional Hs to color in top molecule For the molecule in the bottom drawing area, highlight in red any other H atoms that will contribute to the same signal as the H atom already highlighted red. If no other H atoms will contribute, check the box at right. No additional Hs to color in bottom moleculearrow_forwardIn the drawing area below, draw the major products of this organic reaction: 1. NaOH ? 2. CH3Br If there are no major products, because nothing much will happen to the reactant under these reaction conditions, check the box under the drawing area instead. No reaction. Click and drag to start drawing a structure. ☐ : A คarrow_forwardPredict the major products of the following organic reaction: NC Δ ? Some important Notes: • Draw the major product, or products, of the reaction in the drawing area below. • If there aren't any products, because no reaction will take place, check the box below the drawing area instead. • Be sure to draw bonds carefully to show important geometric relationships between substituents. Note: if your answer contains a complicated ring structure, you must use one of the molecular fragment stamps (available in the menu at right) to enter the ring structure. You can add any substituents using the pencil tool in the usual way. Click and drag to start drawing a structure. Х аarrow_forward
- Predict the major products of this organic reaction. Be sure you use dash and wedge bonds to show stereochemistry where it's important. + ☑ OH 1. TsCl, py .... 文 P 2. t-BuO K Click and drag to start drawing a structure.arrow_forwardConsider this organic reaction: ( Draw the major products of the reaction in the drawing area below. If there won't be any major products, because this reaction won't happen at a significant rate, check the box under the drawing area instead. Click and drag to start drawing a structure. Х : а ค 1arrow_forwardIn the drawing area below, draw the major products of this organic reaction: If there are no major products, because nothing much will happen to the reactant under these reaction conditions, check the box under the drawing area instead. 1. NaH 2. CH3Br ? Click and drag to start drawing a structure. No reaction. : ☐ Narrow_forward
- + Predict the major product of the following reaction. : ☐ + ☑ ค OH H₂SO4 Click and drag to start drawing a structure.arrow_forwardConsider this organic reaction: ... OH CI Draw the major products of the reaction in the drawing area below. If there won't be any major products, because this reaction won't happen at a significant rate, check the box under the drawing area instead. ☐ No Reaction. Click and drag to start drawing a structure. : аarrow_forwardConsider the following reactants: Br Would elimination take place at a significant rate between these reactants? Note for advanced students: by significant, we mean that the rate of elimination would be greater than the rate of competing substitution reactions. yes O no If you said elimination would take place, draw the major products in the upper drawing area. If you said elimination would take place, also draw the complete mechanism for one of the major products in the lower drawing area. If there is more than one major product, you may draw the mechanism that leads to any of them. Major Products:arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning

Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning

Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning

Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning