Interpretation:
The atmospheric pressure on the surface of mars is to be calculated.
Concept introduction:
The relationship between vapor pressure and temperature is given by the Clausius–Clapeyron equation as follows:
Here,
Answer to Problem 158AP
Solution:
Explanation of Solution
Given information: The vapor pressure of atmosphere on earth is
Temperatures of dry ice are
Molar heat of sublimation,
Gas constant,
First, convert heat from kilo joule per mole to joule per mole, the expression is as follows:
Convert the heat in joule per mole as follows:
Now, calculate
Substitute
Taking antilogarithm on both sides as follows:
Rearrange the above expression to obtain the vapor pressure as follows:
The atmospheric pressure at the surface of mars is
Want to see more full solutions like this?
Chapter 11 Solutions
Chemistry
- Consider the iodine monochloride molecule, ICI. Because chlorine is more electronegative than iodine, this molecule is a dipole. How would you expect iodine monochloride molecules in the gaseous state to orient themselves with respect to each other as the sample is cooled and the molecules begin to aggregate? Sketch the orientation you would expect.arrow_forwardReferring to Figure 9.7, state what phase(s) is (are) present at (a) 1 atm, 10C. (b) 3 mm Hg, 20C. (c) 1000 mm Hg, 75C.arrow_forwardDescribe the behavior of a liquid and its vapor in a closed vessel as the temperature increases.arrow_forward
- The vapor pressure of ethanol, C2H5OH, at 50.0 C is 233 mmHg, and its normal boiling point at 1 atm is 78.3 C. Calculate the vapH of ethanol.arrow_forwardWhich of the following do you expect to be molecular solids? a silicon tetrachloride, SiCl4 b lithium bromide, LiBr c sodium fluoride, NaF d bromine chloride, BrClarrow_forwardThe phase diagram for water over a relative narrow pressure and temperature range is given in Figure 9.19. A phase diagram over a considerably wider range of temperature and pressure (kbar) is given nearby. This phase diagram illustrates the polymorphism of ice, the existence of a solid in more than one form. In this case, Roman numerals are used to designate each polymorphic form. For example, Ice I, ordinary ice, is the form that exists under ordinary pressures. The other forms exist only at higher pressures, in some cases extremely high pressure such as Ice VII and Ice VIII. Using the phase diagram, give the approximate P and T conditions at the triple point for Ice III, Ice V, and liquid water. Determine the approximate temperature and pressure for the triple point for Ices VI, VII, and VIII. What is anomalously different about the fusion curves for Ice VI and Ice VII compared to that of Ice I? What phases exist at 8 kbar and 20 °C? At a constant temperature of −10 °C, start at 3 kbar and increase the pressure to 7 kbar. Identify all the phase changes that occur sequentially as these conditions change. Explain why there is no triple point for the combination of Ice VII, Ice VIII, and liquid water.arrow_forward
- Referring to Figure 9.7, state what phase(s) is/are present at (a) 1 atm, 100C. (b) 0.5 atm, 100C.(c) 0.8 atm. 50C.arrow_forwardA special vessel (see Fig. 10.45) contains ice and supercooled water (both at 10C) connected by vapor space. Describe what happens to the amounts of ice and water as time passes.arrow_forwardThe molar heat of fusion of sodium metal is 2.60 kJ/mol, whereas its heat of vaporization is 97.0 kJ/mol. a. Why is the heat of vaporization so much larger than the heat of fusion? b. What quantity of heat would be needed to melt 1.00 g sodium at its normal melting point? c. What quantity of heat would be needed to vaporize 1.00 g sodium at its normal boiling point? d. What quantity of heat would be evolved if 1.00 g sodium vapor condensed at its normal boiling point?arrow_forward
- For the hydrogen halides and the noble gases, we have the following boiling points: Halogen Family, C Noble Gases, C HF, 19 Nc, 246 HCl, 115 Ar, 186 HBr, 67 Kr, 152 HI, 35 Xe, 108 Account for the following: a The general trend in the boiling points of the hydrides and the noble gases. b The unusual boiling point of hydrogen fluoride. c The observation that the hydrogen halides have boiling points that are significantly higher than the noble gases.arrow_forwardUse Figure 11.7 to estimate the boiling point of carbon tetrachloride, CCl4, under an external pressure of 250 mmHg.arrow_forwardThe following data are given for CC14: normalmeltingpoint=23Cnormalboilingpoint=77Cdensityofliquid=1.59g/mLvaporpressureat25C=110mmHg How much heat is required to vaporize 20.0 L of CCl4 at its normal boiling point?arrow_forward
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning