Concept explainers
Barium metal crystallizes in a body-centered cubic lattice (the Ba atoms are at the lattice points only). The unit cell edge length is 502 pm, and the density of the metal is
Interpretation:
The value of Avogadro’s number in a unit cell is to be determined.
Concept introduction:
The relationship between mass
Here,
The volume of a unit cell is given as follows:
Here,
Convert picometer to meter,
Convert centimeter to meter,
Answer to Problem 47QP
Solution:
Explanation of Solution
Given information: The unit cell of metallic barium has a body centred cubic cell lattice.
The edge length of the unit cell is
The density of metallic barium is
Convert the unit cell length from pm to cm as follows:
First, calculate the volume of unit cell, that is, as follows:
Calculate the mass of the unit cell.
Now, calculate the volume of one mole of barium atom.
The mass of barium is
The volume of one mole of barium atom is as follows:
Volume occupied by two barium atoms in body centered cubic unit is less than the actual volume of body centered cubic unit cell because some of the space is empty due to the 68.0 percent packing efficiency this unit cell.
Calculate the number of barium atoms as follows:
The value of Avogadro’s number is
Want to see more full solutions like this?
Chapter 11 Solutions
Chemistry
- Rutile, TiO2, crystallizes in a structure characteristic of many other ionic compounds How many formula units of TiO2 are in the unit cell illustrated here? (The oxide ions marked by an x are wholly within the cell; the others are in the cell faces.) Unit cell for rufflearrow_forwardThe unit cell of silicon carbide, SiC, is illustrated below. (a) In what type of unit cell are the (dark gray) C atoms arranged? (b) If one edge of the silicon carbide unit cell is 436.0 pm, what is the calculated density of this compound? A portion of the solid-state structure of silicon carbide.arrow_forwardA portion of the crystalline lattice for potassium is illustrated below. (a) In what type of unit cell are the K atoms arranged? A portion of the solid-state structure of potassium. (b) If one edge of the potassium unit cell is 533 pm, what is the density of potassium?arrow_forward
- The CsCl structure is a simple cubic array of chloride ions with a cesium ion at the center of each cubic array (see Exercise 69). Given that the density of cesium chloride is 3.97 g/cm3, and assuming that the chloride and cesium ions touch along the body diagonal of the cubic unit cell, calculate the distance between the centers of adjacent Cs+ and Cl ions in the solid. Compare this value with the expected distance based on the sizes of the ions. The ionic radius of Cs+ is 169 pm, and the ionic radius of Cl is 181 pm.arrow_forwardCrystalline polonium has a primitive cubic unit cell, lithium has a body-centered cubic unit cell, and calcium has a face-centered cubic unit cell. How many Po atoms belong to one unit cell? How many Li atoms belong to one unit cell? How many Ca atoms belong to one unit cell? Draw each unit cell. Indicate on your drawing what fraction of each atom lies within the unit cell.arrow_forwardWhat is a lattice? What is a unit cell? Describe a simple cubic unit cell. How many net atoms are contained in a simple cubic unit cell? How is the radius of the atom related to the cube edge length for a simple cubic unit cell? Answer the same questions for the body-centered cubic unit cell and for the face-centered unit cell.arrow_forward
- Silicon carbide, SiC, is a very hard, high-melting solid. What kind of crystal forces account for these properties?arrow_forwardCalcium oxide consists of a face-centered cubic array of O2 ions, with Ca2+ ions at the center of the unit cell and along the centers of all 12 edges. Calculate the number of each ion in the unit cell.arrow_forwardMnO has either the NaCI type structure or the CsCI type structure (see Exercise 69). The edge length of the MnO unit cell is 4.47 10-8 cm and the density of MnO is 5.28 g/cm3. a. Does MnO crystallize in the NaCl or the CsCl type structure? b. Assuming that the ionic radius of oxygen is 140. pm, estimate the ionic radius of manganese.arrow_forward
- Calculate the percent of volume that is actually occupied by spheres in a body-centered cubic lattice of identical spheres You can do this by first relating the radius of a sphere, r, to the length of an edge of a unit cell, l. (Note that the spheres do not touch along an edge but do touch along a diagonal passing through the body-centered sphere.) Then calculate the volume of a unit cell in terms of r. The volume occupied by spheres equals the number of spheres per unit cell times the volume of a sphere (4r3/3).arrow_forwardConsider the three types of cubic units cells. (a) Assuming that the spherical atoms or ions in a primitive cubic unit cell just touch along the cubes edges, calculate the percentage of occupied space within the unit cell. (Recall that the volume of a sphere is (4/3)r3, where r is the radius of the sphere.) (b) Compare the percentage of occupied space in the primitive cell (pc) with the bcc and fcc unit cells. Based on this, will a metal in these three forms have the same or different densities? If different, in which is it most dense? In which is it least dense?arrow_forwardSpinel is a mineral that contains 37.9% aluminum, 17.1% magnesium, and 45.0% oxygen, by mass, and has a density of 3.57 g/cm3.The edge of the cubic unit cell measures 809 pm. How many of each type of ion are present in the unit cell?arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning