A stick with a mass of 0.214 kg and a length of 0.436 m rests in contact with a bowling ball and a rough floor, as shown in Figure 11-48 . The bowling ball has a diameter of 21.6 cm, and the angle the stick makes with the horizontal is 30.0°. You may assume there is no friction between the stick and the bowling ball, though friction with the floor must be taken into account. (a) Find the magnitude of the force exerted on the stick by the bowling ball. (b) Find the horizontal component of the force exerted on the stick by the floor. (c) Repeat part (b) for the vertical component of the force. Figure 11-48 Problem 34
A stick with a mass of 0.214 kg and a length of 0.436 m rests in contact with a bowling ball and a rough floor, as shown in Figure 11-48 . The bowling ball has a diameter of 21.6 cm, and the angle the stick makes with the horizontal is 30.0°. You may assume there is no friction between the stick and the bowling ball, though friction with the floor must be taken into account. (a) Find the magnitude of the force exerted on the stick by the bowling ball. (b) Find the horizontal component of the force exerted on the stick by the floor. (c) Repeat part (b) for the vertical component of the force. Figure 11-48 Problem 34
A stick with a mass of 0.214 kg and a length of 0.436 m rests in contact with a bowling ball and a rough floor, as shown in Figure 11-48. The bowling ball has a diameter of 21.6 cm, and the angle the stick makes with the horizontal is 30.0°. You may assume there is no friction between the stick and the bowling ball, though friction with the floor must be taken into account. (a) Find the magnitude of the force exerted on the stick by the bowling ball. (b) Find the horizontal component of the force exerted on the stick by the floor. (c) Repeat part (b) for the vertical component of the force.
In the figure below, what is the net resistance of the circuit connected to the battery? Assume that all resistances in the circuit is equal to 14.00 kΩ. Thank you.
Due to the nature of this problem, do not use rounded intermediate values-including answers submitted in WebAssign-in your calculations.
3
4
Find the currents flowing in the circuit in the figure below. (Assume the resistances are R₁ =6, R₂ = 20, R₂ = 10 N, R₁ = 8, r₁ = 0.75 0, r2=0.50, 3
× A
× A
I,
= 3.78
12
13
= 2.28
=
1.5
× A
R₁
b
a
R₁₂
w
C
1,
12
13
R₂
E3
12 V
E₁
18 V
g
Ez
3.0 V
12
Ea
شرة
R₁
e
24 V
d
= 0.25 0, and 4
=
0.5 0.)
In the circuit shown below Ɛ = 66.0 V, R5 = 4.00 £2, R3 = 2.00 N, R₂ = 2.20 N, I5 = 11.41 A, I = 10.17 A, and d I₁ = 6.88 A. Find the current through R2 and R3, and the values of the resistors R₁ and R. (Due to the nature of this
problem, do not use rounded intermediate values—including answers submitted in WebAssign-in your calculations.)
12
= 8.12
A
RA
=
-1.24
Based on the known variables, which two junctions should you consider to find the current I3? A
9.59
Which loop will give you an equation with just R₁ as the unknown? Did you follow the sign convention for the potential difference across each element in the loop?
6.49
Which loop will give you an equation with just R as the unknown? Did you follow the sign convention for the potential difference across each element in the loop? N
R₁
ww
R₂
www
R4
ww
14
15
www
R5
www
R3
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.