EBK PHYSICS
5th Edition
ISBN: 8220103026918
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 78GP
To determine
The mass of the tail required for the balance.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A uniform meter stick of mass M has an empty paint can of mass m hanging from one end. The meter stick and the can balance at a point 18.9 cm from the end of the stick where the can is attached. When the balanced stick-can system is suspended from a scale, the reading on the scale is 2.44 N. Calculate the mass of the meter stick. Calculate the mass of the paint can.
A uniform meter stick of mass M has an empty paint can of mass ?m hanging from one end. The meter stick and the can balance at a point 20.2 cm from the end of the stick where the
can is attached. When the balanced stick-can system is suspended from a scale, the reading on the scale is 2.57 N. Calculate the mass of the meter stick
Tries 0/6
Submit Answer
Calculate the mass of the paint can.
Tries 0/6
Submit Answer
An individual leans forwards to pick up a box of 100 N. The weight of his upper body has a magnitude of 450 N. The back is pivoting around the base of the vertebral column. Consider the back of the individual as a rigid bar that is controlled by a muscle with an angle of 12° (See picture, d = trunk-head distance = 1 m).a) Calculate the magnitude of muscle force required to lift the box.b) Calculate the magnitude of the force at the base of the vertebral column. Hints: For (a) solve the equilibrium of moments, i.e. what force is required in the muscle to balance out the moments acting around the base of the spine.For (b), solve the equilibrium of forces acting on the spine, including the muscle force you’ve just calculated, in x and y separately. There are two extra forces not shown in the diagram: x and y contact forces acting at the base of the spine. These are whatever is needed to keep the total forces acting on the spine = 0 (so the spine isn’t accelerating off in some…
Chapter 11 Solutions
EBK PHYSICS
Ch. 11.1 - A bicycle wheel is mounted on an axle, as shown in...Ch. 11.2 - Consider two objects with the following...Ch. 11.3 - A Physics sign is supported symmetrically by two...Ch. 11.4 - A mobile made from three piggy banks (A, B, C) is...Ch. 11.5 - Prob. 5EYUCh. 11.6 - Consider two objects with the following...Ch. 11.7 - Prob. 7EYUCh. 11.8 - In system 1, a torque of 20 N m acts through an...Ch. 11.9 - The angular velocity of the spinning bicycle wheel...Ch. 11 - Two forces produce the same torque. Does it follow...
Ch. 11 - A car pitches down in front when the brakes are...Ch. 11 - A tightrope walker uses a long pole to aid in...Ch. 11 - When a motorcycle accelerates rapidly from a stop...Ch. 11 - Give an example of a system in which the net...Ch. 11 - Give an example of a system in which the net force...Ch. 11 - Is the normal force exerted by the ground the same...Ch. 11 - Give two everyday examples of objects that are not...Ch. 11 - Give two everyday examples of objects that are in...Ch. 11 - Can an object have zero translational acceleration...Ch. 11 - Stars form when a large rotating cloud of gas...Ch. 11 - What purpose does the tail rotor on a helicopter...Ch. 11 - Is it possible to change the angular momentum of...Ch. 11 - Suppose a diver springs into the air with no...Ch. 11 - To tighten a spark plug, it is recommended that a...Ch. 11 - Pulling a Weed The gardening tool shown in Figure...Ch. 11 - A person slowly lowers a 3.6-kg crab trap over the...Ch. 11 - A squirrel-proof bird feeder has a lever that...Ch. 11 - At one position during its cycle, the foot pushes...Ch. 11 - BIO Predict/Calculate Force to Hold a Baseball A...Ch. 11 - At the local playground, a 21-kg child sits on the...Ch. 11 - Predict/Explain Consider the pulley-block systems...Ch. 11 - Suppose a torque rotates your body about one of...Ch. 11 - A torque of 0.97 N m is applied to a bicycle...Ch. 11 - When a ceiling fan rotating with an angular speed...Ch. 11 - When the play button is pressed, a CD accelerates...Ch. 11 - A person holds a ladder horizontally at its...Ch. 11 - A 0.180-kg wooden rod is 1.25 m long and pivots at...Ch. 11 - Predict/Calculate A wheel on a game show is given...Ch. 11 - The L-shaped object in Figure 11-41 consists of...Ch. 11 - The L-shaped object described in the previous...Ch. 11 - A motorcycle accelerates from rest, and both the...Ch. 11 - Predict/Calculate A torque of 13 N m is applied...Ch. 11 - Predict/Explain Suppose the person in Example...Ch. 11 - A string that passes over a pulley has a 0.321-kg...Ch. 11 - To loosen the lid on a jar of jam 7.6 cm in...Ch. 11 - BIO Predict/Calculate Referring to the person...Ch. 11 - Prob. 24PCECh. 11 - Prob. 25PCECh. 11 - Predict/Calculate A schoolyard teeter-totter with...Ch. 11 - A 0.122-kg remote control 23.0 cm long rests on a...Ch. 11 - Predict/Calculate A 0.16-kg meterstick is held...Ch. 11 - Prob. 29PCECh. 11 - A uniform metal rod, with a mass of 2.0 kg and a...Ch. 11 - Prob. 31PCECh. 11 - In Figure 11-46 two acrobats perform a balancing...Ch. 11 - BIO Forces in the Foot In Figure 11-47 we see the...Ch. 11 - A stick with a mass of 0.214 kg and a length of...Ch. 11 - Prob. 35PCECh. 11 - If the cat in Example 11-9 has a mass of 3.9 kg,...Ch. 11 - Prob. 37PCECh. 11 - Maximum Overhang Three identical, uniform books of...Ch. 11 - A baseball bat balances 71.1 cm from one end. If a...Ch. 11 - A 2.85-kg bucket is attached to a rope wrapped...Ch. 11 - A child exerts a tangential 53 4-N force on the...Ch. 11 - Predict/Calculate You pull downward with a force...Ch. 11 - One elevator arrangement includes the passenger...Ch. 11 - Atwood's Machine An Atwoods machine consists of...Ch. 11 - A 1.4-kg bicycle tire with a radius of 33 cm...Ch. 11 - Jogger 1 in Figure 11-51 has a mass of 65.3 kg and...Ch. 11 - Predict/Calculate Suppose jogger 3 in Figure 11-51...Ch. 11 - A torque of 0.12 N m is applied to an egg beater...Ch. 11 - A windmill has an initial angular momentum of 8500...Ch. 11 - Two gerbils run in place with a linear speed of...Ch. 11 - Predict/Explain A student rotates on a...Ch. 11 - A puck on a horizontal, frictionless surface is...Ch. 11 - A puck on a horizontal, frictionless surface is...Ch. 11 - As an ice skater begins a spin, his angular speed...Ch. 11 - A disk-shaped merry-go-round of radius 2.63 m and...Ch. 11 - A student sits at rest on a piano stool that can...Ch. 11 - Predict/Calculate A turntable with a moment of...Ch. 11 - A student on a piano stool rotates freely with an...Ch. 11 - Walking on a Merry-Go-Round A child of mass m...Ch. 11 - Predict/Explain Two spheres of equal mass and...Ch. 11 - Turning a doorknob through 0.25 of a revolution...Ch. 11 - A person exerts a tangential force of 36.1 N on...Ch. 11 - To prepare homemade ice cream a crank must be...Ch. 11 - Power of a Dental Drill A popular make of dental...Ch. 11 - For a home repair job you must turn the handle of...Ch. 11 - The L-shaped object in Figure 11-40 consists of...Ch. 11 - The rectangular object in Figure 11-41 consists of...Ch. 11 - Predict/Calculate A circular saw blade accelerates...Ch. 11 - CE A uniform disk stands upright on its edge, and...Ch. 11 - CE Consider the two rotating systems shown in...Ch. 11 - CE Predict/Explain A disk and a hoop (bicycle...Ch. 11 - CE A beetle sits at the nm of a turntable that is...Ch. 11 - After getting a drink of water a hamster jumps...Ch. 11 - A 47.0-kg uniform rod 4.25 m long is attached to a...Ch. 11 - Prob. 75GPCh. 11 - BIO The Masseter Muscle The masseter muscle, the...Ch. 11 - Exercising the Biceps You are designing exercise...Ch. 11 - Prob. 78GPCh. 11 - In Example 11-11, suppose the ladder is uniform,...Ch. 11 - When you arrive at Dukes Dude Ranch you are...Ch. 11 - Prob. 81GPCh. 11 - Flats Versus Heels A woman might wear a pair of...Ch. 11 - BIO A young girl sits at the edge of a dock by the...Ch. 11 - BIO Deltoid Muscle A crossing guard holds a STOP...Ch. 11 - BIO Triceps To determine the force a persons...Ch. 11 - Predict/Calculate Suppose partial melting of the...Ch. 11 - A bicycle wheel of radius R and mass M is at rest...Ch. 11 - A 0.101-kg yo-yo has an outer radius R that is...Ch. 11 - BIO Peak Pedaling Torque The downward force...Ch. 11 - A cylinder of mass m and radius r has a string...Ch. 11 - Bricks in Equilibrium Consider a system of four...Ch. 11 - BIO Correcting Torsiversion Torsiversion is a...Ch. 11 - BIO Correcting Torsiversion Torsiversion is a...Ch. 11 - BIO Correcting Torsiversion Torsiversion is a...Ch. 11 - BIO Correcting Torsiversion Torsiversion is a...Ch. 11 - Referring to Example 11-14 Suppose the mass of the...Ch. 11 - Prob. 97PPCh. 11 - Referring to Quick Example 11-22 Suppose the child...Ch. 11 - Referring to Quick Example 11-22 Suppose...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The forearm shown below is positioned at an angle with respect to the upper arm , and a 5.0- kg mass is held in the hand. The total mass of the forearm and hand is 3.0 kg, and their center of mass is 15.0 cm from the elbow. (a) What is the magnitude of the force that the biceps muscle exerts on the forearm for =60 ? (b) What is the magnitude of the force on the elbow joint for the same angle? (c) How do these forces depend on the angle ?arrow_forwardTwo children of mass 20.0 kg and 30.0 kg sit balanced on a seesaw with the pivot point located at the center of the seesaw. If the children are separated by a distance of 3.00 m, at what distance from the pivot point is the small child sitting in order to maintain the balance?arrow_forwardAnilarrow_forward
- Two children of mass 15 kg and 26 kg sit balanced on a seesaw with the pivot point located at the center of the seesaw.If the children are separated by a distance of 3.0 m, at what distance, in meters, from the pivot point is the smaller child sitting in order to maintain the balance? r1 =arrow_forwardEven when the head is held erect, as shown in the figure, its center of mass is not directly over the principal point of support (the atlanto-ocipital joint, Point A). The muscles at the back of the neck should, therefore, exert a force to keep the head erect. That is why your head falls forward when you fall asleep in the class. If the head weighs 43 N, calculate the force exerted by the muscles, Fm, using the information in the figure. Assume that x1= 4.9 cm, X2= 2.3 cm, and |Fw|= 43 N. A) Fm= ?? N B) What is the force, Fj, exerted by the pivot on the head?arrow_forwardEven when the head is held erect, as shown in the figure, its center of mass is not directly over the principal point of support (the atlanto-occipital joint, Point A). The muscles at the back of the neck should, therefore, exert a force to keep the head erect. That is why your head falls forward when you fall asleep in the class. If the head weighs 55 N, calculate the force exerted by the muscles ?M using the information in the figure. Assume that ?1=5.3 cm, ?2=2.5 cm, and ∣∣?⃗ w∣∣=55 N. What is the force FJ exerted by the pivot on the head?arrow_forward
- Even when the head is held erect, as shown in the figure, its center of mass is not directly over the principal point of support (the atlanto-occipital joint, Point A). The muscles at the back of the neck should, therefore, exert a force to keep the head erect. That is why your head falls forward when you fall asleep in the class. If the head weighs 51 N, calculate the force exerted by the muscles Fm using the information in the figure. Assume that x1=5.3 cm, x2 = 2.5 cm, and |Fw|= 51 N. What is the force Fj exerted by the pivot on the head? Fj=arrow_forwardTwo scales are separated by 2.00 m, and a plank of mass 4.00 kg is placed between them. Each scale is observed to read 2.00 kg. A person now lies on the plank, after which the right scale reads 30.0 kg and the left scale reads 50.0 kg. How far from the right scale is the person's center of gravity located?arrow_forwardAn 85-kg basketball player does a series of push-ups to strengthen his arm and chest muscles. If both feet and exert the same force and both palms do, likewise, determine the force that the floor exerts of on each of his feet and on each hand. Assume that his center of mass is 0.920 m from the top of his head.arrow_forward
- A tower crane (Figure 1) must always be carefully balanced so that there is no net torque tending to tip it. A particular crane at a building site is about to lift a mmm = 2900-kg air-conditioning unit. The crane's dimensions are shown in (Figure 2). The crane's counterweight has a mass of M = 9400 kg . Ignore the mass of the beam. Where must the crane's counterweight be placed when the load is lifted from the ground? (The counterweight is usually moved automatically via sensors and motors to precisely compensate for the load.) Determine the maximum load that can be lifted with this counterweight when it is placed at its full extent.arrow_forwardA large airplane typically has three sets of wheels: one at the front and two farther back, one on each side under the wings. Consider the Boeing 787 "Dreamliner", with a mass of 198000 kg. In this particular model, the distance from the front wheels to the rear set of wheels is 23.8 m. a) If the center of mass of the airplane is along a line through the center and 3.00 m in front of the rear wheels, how much force, in meganewtons, does the ground exert on each set of rear wheels when the plane is at rest on the runway? b) How much force, in meganewtons, does the ground exert on the front set of wheels?arrow_forwardA tower crane (Figure 1) must always be carefully balanced so that there is no net torque tending to tip it. A particular crane at a building site is about to lift a m = 2700-kg air-conditioning unit. The crane's dimensions are shown in (Figure 2). The crane's counterweight has a mass of M = 10000 kg . Ignore the mass of the beam. Where must the crane's counterweight be placed when the load is lifted from the ground? (The counterweight is usually moved automatically via sensors and motors to precisely compensate for the load.)Express your answer to two significant figures and include the appropriate units. Determine the maximum load that can be lifted with this counterweight when it is placed at its full extent.Express your answer to two significant figures and include the appropriate units.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning