Inquiry into Physics
8th Edition
ISBN: 9781337515863
Author: Ostdiek
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 28Q
To determine
The process due to which most of the energy produced, after a fuel rod in a fission reactor reaches to its end, comes from the fissioning of plutonium-239.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
I am specifically having difficulty in solving part d of this problem.
a) Calculate the number of grams of deuterium in a 54,300 L swimming pool, given deuterium is 0.0150% of natural hydrogen.
(b)
Find the energy released in joules if this deuterium is fused via the reaction 2H + 2H → 3He + n.
(c)
Could the neutrons be used to release more energy?
(d)
Discuss the amount of this type of energy in a swimming pool as compared to that in, say, a gallon of gasoline, also taking into consideration that water is far more abundant. (Enter the ratio of the energy in the deuterium in the pool to the energy in a gallon of gasoline. The energy in a gallon of gasoline is 1.2 ✕ 108 J.)
Edeuterium
Egasoline
=
When a star has exhausted its hydrogen fuel, it may fuse other nuclear fuels. At temperatures above 1.0 x 10° K, helium fusion can occur. Write the equation for the following processes.
(a) Two alpha particles fuse to produce a nucleus A and a gamma ray. What is nucleus A? (Enter the mass number in the first raised box, the atomic number in the second lower box, and the
element, with charge if necessary, in the third box.)
(b) Nucleus A absorbs an alpha particle to produce a nucleus "B" and a gamma ray. What is nucleus B? (Enter your answer using the same format as above.)
(c) Find the total energy (Q) released in the reactions given in parts (a) and (b). Note: the mass of 4
= 8.005 305u.
MeV
I asked this question once and the answer returned was correct, but I couldn't follow the work so I'm hoping you can write it more clearly:
A proposed nuclear reactor facility will have an electrical power output of 805 MW with a 30.2% efficiency in converting nuclear to electrical power. Assuming the average fission reaction produces 227 MeV, how many reactions will take place at the facility every second?
Chapter 11 Solutions
Inquiry into Physics
Ch. 11 - Prob. 1MACh. 11 - Prob. 1PIPCh. 11 - Prob. 2PIPCh. 11 - Prob. 1MIOCh. 11 - Prob. 1QCh. 11 - Prob. 2QCh. 11 - Prob. 3QCh. 11 - Prob. 4QCh. 11 - Prob. 5QCh. 11 - Prob. 6Q
Ch. 11 - Prob. 7QCh. 11 - Prob. 8QCh. 11 - Prob. 9QCh. 11 - Prob. 10QCh. 11 - Prob. 11QCh. 11 - Prob. 12QCh. 11 - Prob. 13QCh. 11 - Prob. 14QCh. 11 - Prob. 15QCh. 11 - Prob. 16QCh. 11 - Prob. 17QCh. 11 - Prob. 18QCh. 11 - Prob. 19QCh. 11 - Prob. 20QCh. 11 - Prob. 21QCh. 11 - Prob. 22QCh. 11 - Prob. 23QCh. 11 - Prob. 24QCh. 11 - Prob. 25QCh. 11 - Prob. 26QCh. 11 - Prob. 27QCh. 11 - Prob. 28QCh. 11 - Prob. 29QCh. 11 - Prob. 30QCh. 11 - Prob. 31QCh. 11 - Prob. 32QCh. 11 - Prob. 33QCh. 11 - Determine the nuclear composition (number of...Ch. 11 - The isotope helium-6 undergoes beta decay. Write...Ch. 11 - Prob. 3PCh. 11 - A nucleus of oxygen-15 undergoes electron capture....Ch. 11 - Prob. 5PCh. 11 - Prob. 6PCh. 11 - Prob. 7PCh. 11 - Prob. 8PCh. 11 - Prob. 9PCh. 11 - Prob. 10PCh. 11 - Prob. 11PCh. 11 - Prob. 12PCh. 11 - . A Geiger counter registers a count rate of 4,000...Ch. 11 - Prob. 14PCh. 11 - Prob. 15PCh. 11 - Prob. 16PCh. 11 - Prob. 17PCh. 11 - Prob. 18PCh. 11 - Prob. 19PCh. 11 - Prob. 20PCh. 11 - Prob. 21PCh. 11 - Prob. 22PCh. 11 - Prob. 1CCh. 11 - Prob. 2CCh. 11 - Prob. 3CCh. 11 - Prob. 4CCh. 11 - Prob. 5CCh. 11 - Prob. 6CCh. 11 - Prob. 7C
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The energy yield of a nuclear weapon is often defined in terms of the equivalent mass of a conventional explosive. 1 ton of a conventional explosive releases 4.2 GJ. A typical nuclear warhead releases 250,000 times more, so the yield is expressed as 250 kilotons. That is a staggering explosion, but the asteroid impact that wiped out the dinosaurs was significantly greater. Assume that the asteroid was a sphere 10 km in diameter, with a density of 2500 kg/m3 and moving at 30 km/s. What energy was released at impact, in joules and in kilotons?arrow_forwardcan i get an explantion how the process happened? please? thank you!!arrow_forward(a)A particle of ionizing radiation creates 4000 ion pairs in thegas inside a Geiger tube as it passes through. and convert the energy to joulesor calories. (b) If all of this energy is converted to thermalenergy in the gas, what is its temperature increase, assuming50.0 cm3 of ideal gas at 0.250-atm pressure? (The smallanswer is consistent with the fact that the energy is large on aquantum mechanical scale but small on a macroscopicscale.)arrow_forward
- Find the amount of energy (Q) released in the fusion reaction below, in units of MeV. (Consult a table of nuclides to find the nuclide masses, and use at least five decimal places in your calculations before rounding your final answer.)arrow_forwardIf 119 grams of a material absorbs 13 Joules of energy from radiation, what is the absorbed dose to the material? (Answer in Gray, round to the nearest single decimal place) Question 2 If 10 g of of tissue is uniformly irradiated and receives a dose of 1 cGy, what is the dose (in cGy) to half of this tissue?arrow_forwardThe following explanation of a fission reactor contains many errors. Please correct as many as you can find. You may copy the whole text out while correcting the errors; in that case please underline what you have changed. You may prefer to use conventional instructions to printers, of the form, para 1 line 1 for ”harnessing” read ”exploiting”, which would cause thetexttoread”. . . byexploitingtheenergy. . . ” A nuclear fission reactor fuelled by uranium operates by harnessing the energy released during the fusing (fission) of uranium atoms into three or four lighter nuclei with less bind- ing energy. Uranium-238 (U-238) is the fissile isotope used. Fission is triggered when the U238 is bombarded by neutrinos, which are absorbed by the orbiting electrons. When a U-235 nucleus undergoes fission, it releases several neutrinos. If these neutrinos are ab- sorbed by other U-235 nuclei, they undergo fission, releasing more neutrinos. This process continues in a chain reaction, giving a…arrow_forward
- An unknown radioactive element decays into non-radioactive substances. In 360 days the radioactivity of a sample decreases by 34 percent. (a) Find the decay constant k. (Round your answer to 5 decimal places.) (b) What is the half-life of the element? (Round your answer to two decimal places) half-life: (days) (c) How long will it take for a sample of 100 mg to decay to 59 mg? (Round your answer to two decimal places) time needed: (days)arrow_forwardAnother series of nuclear reactions that can produce energy in the interior of stars is the cycle described below. This cycle is most efficient when the central temperature in a star is above 1.6x10' K. Because the temperature at the center of the Sun is only 1.5×10' K, the following cycle below produces less than 10% of the Sun's energy. (Enter the mass number in the first raised box, the atomic number in the second lower box, and the element in the third box.) (a) A high-energy proton is absorbed by 12c. Another nucleus, A, is produced in the reaction, along with a gamma ray. Identify nucleus A. (b) Nucleus A decays through positron emission to form nucleus B. Identify nucleus B. (c) Nucleus B absorbs a proton to produce nucleus C and a gamma ray. Identify nucleus C. (d) Nucleus C absorbs a proton to produce nucleus D and a gamma ray. Identify nucleus D. (e) Nucleus D decays through positron emission to produce nucleus E. Identify nucleus E. (f) Nucleus E absorbs a proton to produce…arrow_forwardAs explained in the previous section, if you want to have a nuclear reaction chain starting into your reactor, you need to enrich the uranium to have more uranium 235 available. It is assumed that you need to have about 4% of uranium 235 in order to maintain the reaction chain and to produce enough neutrons. Those neutrons are, however, too energetic to induce another fission reaction, it is needed first to reduce their energy. In most reactors, this is the role of the water located inside. 1) Explain how the energy is stored inside the neutrons 2) How can the water reduce this energy? 3) Is the water the only thing able to act as moderator? 4) What is the effect of the moderator on the cross-section of the atoms of uranium 235?arrow_forward
- Consider an initial amount of 708g of radioactive material with half-life h=3.2hdays. Use a spreadsheet to record the initial amount (at day 0) and to calculate the amounts left at 1day intervals, up to day 10 included. What is the average amount of material over the time interval from day 0 to day 10? Round your answer to the nearest integer:arrow_forwardQ2The radioactive isotope of lead, Pb-209, decays at a rate proportional to the amount present at time t and has a half-life of3.3 hours. If 1 gram of this isotope is present initially, how long will it take for 90% of the lead to decay?arrow_forwardI need 100% right solution with clear calculations.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning