Inquiry into Physics
8th Edition
ISBN: 9781337515863
Author: Ostdiek
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 1C
To determine
To explain why Geiger counters are not accurate to count high rates.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A Geiger counter is placed at a distance 2m from a Cobalt 60 source emitting γ rays. The measured count rate is 545/min..
What is the count rate when the Geiger counter is moved to a new position 7m from the 60Co?
✓
ON
"O
2.75 MeV
0.511 MeV
0.511 MeV
B, E= 1.73 MeV
Eave = 0.721 Mev
O MeV
An x - ray technician works 5 days per week, 50 weeks per year. Assume the technician takes an average of eight x - rays per day and receives a dose of 5.0 rem/yr as a result. (a) Estimate the dose in rem per x - ray taken. (b) How does this result compare with the amount of low - level background radiation the technician is exposed to?
Chapter 11 Solutions
Inquiry into Physics
Ch. 11 - Prob. 1MACh. 11 - Prob. 1PIPCh. 11 - Prob. 2PIPCh. 11 - Prob. 1MIOCh. 11 - Prob. 1QCh. 11 - Prob. 2QCh. 11 - Prob. 3QCh. 11 - Prob. 4QCh. 11 - Prob. 5QCh. 11 - Prob. 6Q
Ch. 11 - Prob. 7QCh. 11 - Prob. 8QCh. 11 - Prob. 9QCh. 11 - Prob. 10QCh. 11 - Prob. 11QCh. 11 - Prob. 12QCh. 11 - Prob. 13QCh. 11 - Prob. 14QCh. 11 - Prob. 15QCh. 11 - Prob. 16QCh. 11 - Prob. 17QCh. 11 - Prob. 18QCh. 11 - Prob. 19QCh. 11 - Prob. 20QCh. 11 - Prob. 21QCh. 11 - Prob. 22QCh. 11 - Prob. 23QCh. 11 - Prob. 24QCh. 11 - Prob. 25QCh. 11 - Prob. 26QCh. 11 - Prob. 27QCh. 11 - Prob. 28QCh. 11 - Prob. 29QCh. 11 - Prob. 30QCh. 11 - Prob. 31QCh. 11 - Prob. 32QCh. 11 - Prob. 33QCh. 11 - Determine the nuclear composition (number of...Ch. 11 - The isotope helium-6 undergoes beta decay. Write...Ch. 11 - Prob. 3PCh. 11 - A nucleus of oxygen-15 undergoes electron capture....Ch. 11 - Prob. 5PCh. 11 - Prob. 6PCh. 11 - Prob. 7PCh. 11 - Prob. 8PCh. 11 - Prob. 9PCh. 11 - Prob. 10PCh. 11 - Prob. 11PCh. 11 - Prob. 12PCh. 11 - . A Geiger counter registers a count rate of 4,000...Ch. 11 - Prob. 14PCh. 11 - Prob. 15PCh. 11 - Prob. 16PCh. 11 - Prob. 17PCh. 11 - Prob. 18PCh. 11 - Prob. 19PCh. 11 - Prob. 20PCh. 11 - Prob. 21PCh. 11 - Prob. 22PCh. 11 - Prob. 1CCh. 11 - Prob. 2CCh. 11 - Prob. 3CCh. 11 - Prob. 4CCh. 11 - Prob. 5CCh. 11 - Prob. 6CCh. 11 - Prob. 7C
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Calculate the dose in Sv to the chest at a patient given an xray under the following conditions. The xray beam intensity is 1.50 W/m2, the area of the chest exposed is 0.0750 m2 35.0% of the xrays are absorbed in 20.0 kg of tissue, and the exposure time is 0.250 s.arrow_forwardHow many Gy of exposure is needed to give a cancerous tumor a dose of 40 Sv if it is exposed to acfivity?arrow_forwardSuppose one load irradiation plant uses a 137Cs source while another uses an equal activity of 60Co. Assuming equal fractions of the (rays from the sources are absorbed, why is more time needed to get the same dose using me 137Cs source?arrow_forward
- An x-ray technician works 5 days per week, 50 weeks per year. (Assume that the technician takes an average of six x-rays per day and receives a dose of 4.1 rem/yr as a result.) (a) Estimate the dose in rem per x-ray taken. (b) How does this result compare with the amount of low-level background radiation the technician is exposed to? Assume that low-level radiation from natural sources, such as cosmic rays and radioactive rocks and soil, delivers a dose of approximately 0.13 rem/year per person. __________times the normal background levelarrow_forwardIt has become popular for some people to have yearly whole-body scans (CT scans, formerly called CAT scans) using x rays, just to see if they detect anything suspicious. A number of medical people have recently questioned the advisability of such scans, due in part to the radiation they impart. Typically, one such scan gives a dose of 12 mSv, applied to the whole body. By contrast, a chest x ray typically administers 0.20 mSv to only 5.0 kg of tissue. How many chest x rays would deliver the same total amount of energy to the body of a 75 kg person as one whole-body scan?arrow_forwardA Geiger counter is placed at a distance 2m from a Cobalt 60 source emitting γ rays. The measured count rate is 545/min.. What is the count rate when the Geiger counter is moved to a new position 7m from the 60Co? Select one: a. 25.43/s b. 3.24/s c. 44.5/min d. 71.22/sarrow_forward
- A thyroid cancer patient is given a dosage of 131I (half-life = 8.1 d). What fraction of the dosage of 131I will still be in the patient's thyroid after 72.9 days? (Let N0 and Nf represent the initial dose and the amount left after 72.9 days, respectively. Enter your answer as a fraction.)arrow_forwardA point source of gamma radiation has a half-life of 45.0 minutes. A Geiger counter placed 3.00m from the source registers an initial count rate of 7.20 × 102 counts per second. The counter is immediately moved to a new position and left there. If after 3.00 hours, the count rate recorded is exactly 5.00 counts per second, how far is the counter from the source?arrow_forwardSihle, an archaeologist from UWC finds an ancient wooden axe handle at an excavation site at Onderstepoort. He wants to determine the age of the axe handle. He takes a small sample of carbon from the axe handle and places it near a Geiger counter. The counter reads 5 counts/minute. He then takes the same mass of carbon from a living tree and finds that it has a count-rate of 40 counts/minute. a) How old is the axe handle? (assume the half-life of C-14 is about 6000 years) - choose answer below b) Explain your reasoning in 'Rationale' A. 6000 years B. 2000 years C. 18 000 years D. 12 000 yearsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning