Chemistry for Engineering Students
3rd Edition
ISBN: 9781285199023
Author: Lawrence S. Brown, Tom Holme
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11, Problem 11.14PAE
Candle wax is a mixture of hydrocarbons. In the reaction of oxygen with candle w ax in Figure 11.2, the rate of consumption of oxygen decreased with time after the flask was covered, and eventually' the flame went out. From the perspective of the kinetic-molecular theory, describe what is happening in the flask.
FIGURE 11.2 When a candle burns in a closed container, the flame will diminish and eventually go out. As the amount of oxygen present decreases, the rate of combustion will also decrease. Eventually, the rate of combustion is no longer sufficient to sustain the flame even though there is still some oxygen present in the vessel.
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 11 Solutions
Chemistry for Engineering Students
Ch. 11 - Prob. 1COCh. 11 - . define the rate of a chemical reaction and...Ch. 11 - Prob. 3COCh. 11 - Prob. 4COCh. 11 - . explain the difference between elementary...Ch. 11 - . find the rate law predicted for a particular...Ch. 11 - . use a molecular perspective to explain the...Ch. 11 - Prob. 8COCh. 11 - . explain the role of a catalyst in the design of...Ch. 11 - Prob. 11.1PAE
Ch. 11 - Prob. 11.2PAECh. 11 - In what region of the atmosphere is ozone...Ch. 11 - What are the steps in the Chapman cycle? Explain...Ch. 11 - What is the net chemical reaction associated with...Ch. 11 - At what points in the Chapman cycle do...Ch. 11 - Prob. 11.7PAECh. 11 - Prob. 11.8PAECh. 11 - Prob. 11.9PAECh. 11 - For each of the following, suggest appropriate...Ch. 11 - For each of the following, suggest an appropriate...Ch. 11 - Rank the following in order of increasing reaction...Ch. 11 - Prob. 11.13PAECh. 11 - Candle wax is a mixture of hydrocarbons. In the...Ch. 11 - Prob. 11.15PAECh. 11 - The reaction for the Haber process, the industrial...Ch. 11 - 11.17 Ammonia can react with oxygen to produce...Ch. 11 - The following data were obtained in the...Ch. 11 - Prob. 11.19PAECh. 11 - Experimental data are listed here for the reaction...Ch. 11 - Azomethane, CH3NNCH3, is not a stable compound,...Ch. 11 - Prob. 11.22PAECh. 11 - A reaction has the experimental rate equation Rate...Ch. 11 - Second-order rate constants used in modeling...Ch. 11 - For each of the rate laws below, what is the order...Ch. 11 - 11.26 The reaction of C(Xg) with NO2(g) is second...Ch. 11 - Prob. 11.27PAECh. 11 - Prob. 11.28PAECh. 11 - The hypothetical reaction, A + B —*C, has the rate...Ch. 11 - The rate of the decomposition of hydrogen...Ch. 11 - Prob. 11.31PAECh. 11 - 11.32 The following experimental data were...Ch. 11 - The following experimental data were obtained for...Ch. 11 - 11.34 Rate data were obtained at 25°C for the...Ch. 11 - 11.35 For the reaction 2 NO(g) + 2 H?(g) — N,(g) +...Ch. 11 - The reaction NO(g) + O,(g) — NO,(g) + 0(g) plays a...Ch. 11 - Prob. 11.37PAECh. 11 - Prob. 11.38PAECh. 11 - The decomposition of N2O5 in solution in carbon...Ch. 11 - In Exercise 11.39, if the initial concentration of...Ch. 11 - 11.41 For a drug to be effective in treating an...Ch. 11 - Amoxicillin is an antibiotic packaged as a powder....Ch. 11 - As with any drug, aspirin (acetylsalicylic acid)...Ch. 11 - 11.44 A possible reaction for the degradation of...Ch. 11 - The initial concentration of the reactant in a...Ch. 11 - A substance undergoes first-order decomposition....Ch. 11 - Prob. 11.47PAECh. 11 - 11.48 The following data were collected for the...Ch. 11 - The rate of photodecomposition of the herbicide...Ch. 11 - Prob. 11.50PAECh. 11 - 11.51 Peroxyacetyl nitrate (PAN) has the chemical...Ch. 11 - Prob. 11.52PAECh. 11 - Hydrogen peroxide (H20i) decomposes into water and...Ch. 11 - use the kineticmolecular theory to explain why an...Ch. 11 - The activation energy for the reaction in which...Ch. 11 - The labels on most pharmaceuticals state that the...Ch. 11 - The following rate constants were obtained in an...Ch. 11 - The table below presents measured rate constants...Ch. 11 - Prob. 11.59PAECh. 11 - Prob. 11.60PAECh. 11 - Prob. 11.61PAECh. 11 - Prob. 11.62PAECh. 11 - Can a reaction mechanism ever be proven correct?...Ch. 11 - Prob. 11.64PAECh. 11 - Describe how the Chapman cycle is a reaction...Ch. 11 - Prob. 11.66PAECh. 11 - Prob. 11.67PAECh. 11 - Prob. 11.68PAECh. 11 - The following mechanism is proposed for a...Ch. 11 - 11.64 HBr is oxidized in the following reaction: 4...Ch. 11 - Prob. 11.71PAECh. 11 - If a textbook defined a catalyst as "a substance...Ch. 11 - Prob. 11.73PAECh. 11 - Prob. 11.74PAECh. 11 - What distinguishes homogeneous and heterogeneous...Ch. 11 - Prob. 11.76PAECh. 11 - Based on the kinetic theory of matter, what would...Ch. 11 - Prob. 11.78PAECh. 11 - In Chapter 3, we discussed the conversion of...Ch. 11 - The label on a bottle of 3% (by volume) hydrogen...Ch. 11 - Prob. 11.81PAECh. 11 - Prob. 11.82PAECh. 11 - Prob. 11.83PAECh. 11 - Prob. 11.84PAECh. 11 - Prob. 11.85PAECh. 11 - Prob. 11.86PAECh. 11 - Prob. 11.87PAECh. 11 - Prob. 11.88PAECh. 11 - Prob. 11.89PAECh. 11 - Prob. 11.90PAECh. 11 - Prob. 11.91PAECh. 11 - Prob. 11.92PAECh. 11 - Prob. 11.93PAECh. 11 - Prob. 11.94PAECh. 11 - 11.93 On a particular day, the ozone level in...Ch. 11 - Prob. 11.96PAECh. 11 - The following is a thought experiment. Imagine...Ch. 11 - The following statements relate to the reaction...Ch. 11 - Prob. 11.99PAECh. 11 - Experiments show that the reaction of nitrogen...Ch. 11 - Substances that poison a catalyst pose a major...Ch. 11 - Prob. 11.102PAECh. 11 - Prob. 11.103PAECh. 11 - 11.102 Suppose that you are studying a reaction...Ch. 11 - Prob. 11.105PAECh. 11 - Prob. 11.106PAECh. 11 - Prob. 11.107PAECh. 11 - Prob. 11.108PAECh. 11 - 11.1047 Fluorine often reacts explosively. What...Ch. 11 - Prob. 11.110PAECh. 11 - Prob. 11.111PAECh. 11 - When formic acid is heated, it decomposes to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Based on the kinetic theory of matter, what would the action of a catalyst do to a reaction that is the reverse of some reaction that we say is catalyzed?arrow_forwardConsider the decomposition reaction 2X2Y+ZThe following graph shows the change in concentration with respect to time for the reaction. What does each of the curves labeled 1, 2, and 3 represent?arrow_forwardThe label on a bottle of 3% (by volume) hydrogen peroxide, H2O2, purchased at a grocery store, states that the solution should be stored in a cool, dark place. H2O2decomposes slowly over time, and the rate of decomposition increases with an increase in temperature and in the presence of light. However, the rate of decomposition increases dramatically if a small amount of powdered MnO- is added to the solution. The decomposition products are H2O and O2. MnO2 is not consumed in the reaction. Write the equation for the decomposition of H2O2. What role does MnO2 play? In the chemistry lab, a student substituted a chunk of MnO2 for the powdered compound. The reaction rate was not appreciably increased. WTiat is one possible explanation for this observation? Is MnO2 part of the stoichiometry of the decomposition of H2O2?arrow_forward
- Iodomethane (CH3I) is a commonly used reagent in organic chemistry. When used properly, this reagent allows chemists to introduce methyl groups in many different useful applications. The chemical does pose a risk as a carcinogen, possibly owing to iodomethanes ability to react with portions of the DNA strand (if they were to come in contact). Consider the following hypothetical initial rates data: [DNA]0 ( mol/L) [CH3I]0 ( mol/L) Initial Rate (mol/Ls) 0.100 0.100 3.20 104 0.100 0.200 6.40 104 0.200 0.200 1.28 103 Which of the following could be a possible mechanism to explain the initial rate data? MechanismIDNA+CH3IDNACH3++IMechanismIICH3ICH3++ISlowDNA+CH3+DNACH3+Fastarrow_forwardConsider the following statements: In general, the rate of a chemical reaction increases a bit at first because it takes a while for the reaction to get warmed up. After that, however, the rate of the reaction decreases because its rate is dependent on the concentrations of the reactants, and these are decreasing. Indicate everything that is correct in these statements, and indicate everything that is incorrect. Correct the incorrect statements and explain.arrow_forwardThe reaction for the Haber process, the industrial production of ammonia, is N2(g)+3H2(g)2NH3(g) Assume that under certain laboratory conditions ammonia is produced at the rate of 6.29 ×10-5 molL-1s-1. At what rate is nitrogen consumed? At what rate is hydrogen consumed?arrow_forward
- A friend of yours states, A balanced equation tells us how chemicals interact. Therefore, we can determine the rate law directly from the balanced equations. What do you tell your friend?arrow_forwardAt 573 K, gaseous NO2(g) decomposes, forming NO(g) and O2(g). If a vessel containing NO2(g) has an initial concentration of 1.9 102 mol/L, how long will it take for 75% of the NO2(g) to decompose? The decomposition of NO2(g) is second-order in the reactant and the rate constant for this reaction, at 573 K, is 1.1 L/mol s.arrow_forwardCompare the functions of homogeneous and heterogeneous catalysts.arrow_forward
- Isomerization of CH3NC occurs slowly when CH3NC is heated. CH3NC(g) CH3CN(g) To study the rate of this reaction at 488 K, data on [CH3NC] were collected at various times. Analysis led to the following graph. (a) What is the rate law for this reaction? (b) What is the equation for the straight line in this graph? (c) Calculate the rate constant for this reaction. (d) How long does it take for half of the sample to isomerize? (e) What is the concentration of CH3NC after 1.0 104 s?arrow_forward. Account for the increase in reaction rate brought about by a catalyst.arrow_forwardYou are studying the kinetics of the reaction H2(g) + F2(g) 2HF(g) and you wish to determine a mechanism for the reaction. You run the reaction twice by keeping one reactant at a much higher pressure than the other reactant (this lower-pressure reactant begins at 1.000 atm). Unfortunately, you neglect to record which reactant was at the higher pressure, and you forget which it was later. Your data for the first experiment are: Pressure of HF (atm) Time(min) 0 0 0.300 30.0 0.600 65.8 0.900 110.4 1.200 169.1 1.500 255.9 When you ran the second experiment (in which the higher pressure reactant was run at a much higher pressure), you determine the values of the apparent rate constants to be the same. It also turns out that you find data taken from another person in the lab. This individual found that the reaction proceeds 40.0 times faster at 55C than at 35C. You also know, from the energy-level diagram, that there are three steps to the mechanism, and the first step has the highest activation energy. You look up the bond energies of the species involved and they are (in kJ/mol): H8H (432), F8F (154), and H8F (565). a. Sketch an energy-level diagram (qualitative) that is consistent with the one described previously. Hint: See Exercise 106. b. Develop a reasonable mechanism for the reaction. c. Which reactant was limiting in the experiments?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781285199023Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781285199023
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Kinetics: Chemistry's Demolition Derby - Crash Course Chemistry #32; Author: Crash Course;https://www.youtube.com/watch?v=7qOFtL3VEBc;License: Standard YouTube License, CC-BY