Experimental data are listed here for the reaction B:
Time (s) | IB] (mol/L) |
0.00 | 0.000 |
10.0 | 0.326 |
20.0 | 0.572 |
30.0 | 0.750 |
40.0 | 0.890 |
- Prepare a graph from these data, connect the points with a smooth line, and calculate the rate of change of [B] for each 10-s interval from 0.0 to 40.0 s. Does the rate of change decrease from one time interval to the next? Suggest a reason for this result.
- How is the rate of change of [AJ related to the rate of change of [B] in each time interval? Calculate the rate of change of [AJ for the time interval from 10.0 to 20.0 s.
- What is the instantaneous rate, A[B]/Ar, when [BI = 0.750 mol/L?
a)
Interpretation:
A graph based on the given data must be plotted and the rate of change of [B] for every 10 s interval must be calculated.
Concept Introduction:
- Chemical reactions proceed at a certain rate which is represented in terms of the change in concentration over a certain period of time
- The rate can be expressed either in terms of a decrease in concentration of the reactants or an increase in the concentration of products.
Answer to Problem 11.20PAE
Solution:
The plot is depicted below.
The rate of change of [B] decreases from one-time interval to the next.
Explanation of Solution
The given reaction is:
A plot of concentration of [B] vs time based on the given data is shown below:
As per the above calculations, the rate of change decreases from one-time interval to the next. This is because as time increases the concentration of reactants decreases as a result the rate of formation of the products will also decrease.
(b)
Interpretation:
The relation between the rate of change of [A] and the rate of change of [B] must be explained. The rate of change of [A] for the time interval from 10.0 to 20.0 s should be calculated.
Concept Introduction:
- Chemical reactions proceed at a certain rate which is represented in terms of the change in concentration over a certain period of time
- The rate can be expressed either in terms of a decrease in concentration of the reactants or an increase in the concentration of products.
Answer to Problem 11.20PAE
Solution:
The rate of change of A is half that of B and for time interval 10 to 20 s rate of change of [A] is
Explanation of Solution
The given reaction is:
Based on the stoichiometry of this reaction, the rate can be expressed as:
For the time interval between t = 10 to t = 20 s:
(c)
Interpretation:
The instantaneous rate must be calculated when [B] = 0.750 mol/L
Concept Introduction:
- Chemical reactions proceed at a certain rate which is represented in terms of the change in concentration over a certain period of time
- The rate can be expressed either in terms of a decrease in concentration of the reactants or an increase in the concentration of products.
- Average rate of a reaction can be defined as the difference in the concentrations measured at two different times whereas, instantaneous rate can be defined as the rate of a reaction at a particular instant in time.
Answer to Problem 11.20PAE
Solution: Rate = 0.200 mol/L-s
Explanation of Solution
Instantaneous rate can be deduced by drawing a tangent at the point of the curve that corresponds to a particular instant. The slope of the tangent gives the instantaneous rate. In this case the value of [B] = 0.075 mol/L corresponds to a time t = 30 sec. The tangent and the slope are depicted in the plot shown below:
Therefore, the instantaneous rate is
Want to see more full solutions like this?
Chapter 11 Solutions
Chemistry for Engineering Students
- Indicate the correct option for the velocity distribution function of gas molecules:a) its velocity cannot be measured in any other way due to the small size of the gas moleculesb) it is only used to describe the velocity of particles if their density is very high.c) it describes the probability that a gas particle has a velocity in a given interval of velocitiesd) it describes other magnitudes, such as pressure, energy, etc., but not the velocity of the moleculesarrow_forwardIndicate the correct option for the velocity distribution function of gas molecules:a) its velocity cannot be measured in any other way due to the small size of the gas moleculesb) it is only used to describe the velocity of particles if their density is very high.c) it describes the probability that a gas particle has a velocity in a given interval of velocitiesd) it describes other magnitudes, such as pressure, energy, etc., but not the velocity of the moleculesarrow_forwardDraw the skeletal structure of the alkane 4-ethyl-2, 2, 5, 5- tetramethylnonane. How many primary, secondary, tertiary, and quantenary carbons does it have?arrow_forward
- Electronic contribution to the heat capacity at constant volume A) is always zero B) is zero, except for excited levels whose energy is comparable to KT C) equals 3/2 Nk D) equals Nk exp(BE)arrow_forwardPlease correct answer and don't used hand raitingarrow_forwardCalculate the packing factor of CaTiO3. It has a perovskite structure. Data: ionic radii Co²+ = 0.106 nm, Ti4+ = 0.064 nm, O² = 0.132 nm; lattice constant is a = 2(rTi4+ + ro2-). Ca2+ 02- T14+ Consider the ions as rigid spheres. 1. 0.581 or 58.1% 2. -0.581 or -58.1 % 3. 0.254 or 25.4%arrow_forward
- General formula etherarrow_forwardPlease provide the retrosynthetic analysis and forward synthesis of the molecule on the left from the starting material on the right. Please include hand-drawn structures! will upvote! Please correct answer and don't used hand raitingarrow_forwardPlease provide the retrosynthetic analysis and forward synthesis of the molecule on the left from the starting material on the right. Please include hand-drawn structures! will upvote!arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning