
Concept explainers
Each of the five struts shown consists of a solid steel rod. (a) Knowing that the strut of Fig. (1) is of a 20-mm diameter, determine the factor of safety with respect to buckling for the loading shown. (b) Determine the diameter of each of the other struts for which the factor of safety is the same as the factor of safety obtained in part a. Use E = 200 GPa.
Fig. P10.27
(a)

Find the factor of safety with respect to buckling.
Answer to Problem 27P
The factor of safety with respect to buckling is
Explanation of Solution
The dimeter of the strut (1) is
The centric load in the strut (1) is
The modulus of elasticity of the column is
Determine the moment of inertia of the strut (1)
Here, the diameter of the strut 1 is
Substitute 20 mm for
Both the ends are pin connected.
The effective length of the column
Determine the critical load
Here, the modulus of elasticity is E.
Substitute 200 GPa for E,
Determine the factor of safety (FOS) using the relation.
Here, the allowable load in strut 1 is
Substitute 19.14 kN for
Therefore, the factor of safety with respect to buckling is
(b)

Find the diameter of the other struts for the condition that the factor of safety is same.
Answer to Problem 27P
The diameter of the strut (2) is
The diameter of the strut (3) is
The diameter of the strut (4) is
The diameter of the strut (5) is
Explanation of Solution
Determine the factor of safety (FOS) using the relation.
Therefore, the factor of safety is directly proportional to the critical load.
Here, the moment of inertia of ith strut is
Strut (2);
Show the effective length of the strut (2) as in Figure 1.
The effective length of the strut (2) is twice the length of the strut (1).
Substitute 2 for i, 2L for
Therefore, the diameter of the strut (2) is
Strut (3);
Show the effective length of the strut (3) as in Figure 2.
The effective length of the strut (3) is half the length of the strut (1).
Substitute 3 for i,
Therefore, the diameter of the strut (3) is
Strut (4);
Show the effective length of the strut (4) as in Figure 3.
The effective length of the strut (4) is 0.7 times the length of the strut (1).
Substitute 4 for i,
Therefore, the diameter of the strut (4) is
Strut (5);
Show the effective length of the strut (5) as in Figure 4.
The effective length of the strut (5) is equal to the length of the strut (1).
Substitute 5 for i, L for
Therefore, the diameter of the strut (5) is
Want to see more full solutions like this?
Chapter 10 Solutions
Mechanics of Materials, 7th Edition
- Problem 1 (65 pts, suggested time 50 mins). An elastic string of constant line tension1T is pinned at x = 0 and x = L. A constant distributed vertical force per unit length p(with units N/m) is applied to the string. Under this force, the string deflects by an amountv(x) from its undeformed (horizontal) state, as shown in the figure below.The PDE describing mechanical equilibrium for the string isddx Tdvdx− p = 0 . (1)(a) [5pts] Identify the BCs for the string and identify their type (essential/natural). Writedown the strong-form BVP for the string, including PDE and BCs.(b) [10pts] Find the analytical solution of the BVP in (a). Compute the exact deflectionof the midpoint v(L/2).(c) [15pts] Derive the weak-form BVP.(d) [5pts] What is the minimum number of linear elements necessary to compute the deflection of the midpoint?(e) [15pts] Write down the element stiffness matrix and the element force vector for eachelement.arrow_forwardProblem 1 (35 pts). An elastic string of constant line tension1 T is pinned at x = 0 andx = L. A constant distributed vertical force per unit length p (with units N/m) is appliedto the string. Under this force, the string deflects by an amount v(x) from its undeformed(horizontal) state, as shown in the figure below.Force equilibrium in the string requires thatdfdx − p = 0 , (1)where f(x) is the internal vertical force in the string, which is given byf = Tdvdx . (2)(a) [10pts] Write down the BVP (strong form) that the string deflection v(x) must satisfy.(b) [2pts] What order is the governing PDE in the BVP of (a)?(c) [3pts] Identify the type (essential/natural) of each boundary condition in (a).(d) [20pts] Find the analytical solution of the BVP in (a).arrow_forwardProblem 2 (25 pts, (suggested time 15 mins). An elastic string of line tension T andmass per unit length µ is pinned at x = 0 and x = L. The string is free to vibrate, and itsfirst vibration mode is shown below.In order to find the frequency of the first mode (or fundamental frequency), the string isdiscretized into a certain number of linear elements. The stiffness and mass matrices of thei-th element are, respectivelyESMi =TLi1 −1−1 1 EMMi =Liµ62 11 2 . (2)(a) [5pts] What is the minimum number of linear elements necessary to compute the fundamental frequency of the vibrating string?(b) [20pts] Assemble the global eigenvalue problem and find the fundamental frequency ofvibration of the stringarrow_forward
- I need part all parts please in detail (including f)arrow_forwardProblem 3 (10 pts, suggested time 5 mins). In class we considered the mutiphysics problem of thermal stresses in a rod. When using linear shape functions, we found that the stress in the rod is affected by unphysical oscillations like in the following plot E*(ux-a*T) 35000 30000 25000 20000 15000 10000 5000 -5000 -10000 0 Line Graph: E*(ux-a*T) MULT 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Arc length (a) [10pts] What is the origin of this issue and how can we fix it?arrow_forwardanswer the questions and explain all of it in words. Ignore where it says screencast and in class explanationarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





