Mechanics of Materials, 7th Edition
7th Edition
ISBN: 9780073398235
Author: Ferdinand P. Beer, E. Russell Johnston Jr., John T. DeWolf, David F. Mazurek
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10.4, Problem 91P
(a)
To determine
Find the largest eccentric load P.
(b)
To determine
Find the largest eccentric load P.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A pin-connected truss is loaded and supported as shown. Each aluminum member has a cross-sectional area of A = 3.7 in.². Assume a =
3.00 ft and b = 3.60 ft. If the normal stress in each member must not exceed 35 ksi, determine the maximum load Pmax that may be
supported by the structure.
A
Answer: Pmax=
b
B
b
kips
Two axial members are used to
4.3 m
support a load P applied at joint B.
Member (1) has a cross-sectional
area of A: = 3,080 mm? and an
allowable normal stress of 180 MPa.
Member (2) has a cross-sectional
area of A2 = 4,650 mm? and an
(1)
5.0 m
allowable normal stress of 75 MPa.
Determine the maximum load P
that may be supported by the
structure without exceeding either
allowable normal stress.
(2)
2.0 m
The rigid beam BC is supported by rods (1) and (2). The cross-sectional area of rod (1) is 9 mm². The cross-sectional area of rod (2) is 18
mm². For a uniformly distributed load of w = 2.3 kN/m, determine the length a so that the normal stress is the same in each rod.
Assume L = 3.00 m.
(1)
B
Answer: a =
i
L
W
a
(2)
m
Chapter 10 Solutions
Mechanics of Materials, 7th Edition
Ch. 10.1 - Knowing that the spring at A is of constant k and...Ch. 10.1 - Two rigid bars AC and BC are connected by a pin at...Ch. 10.1 - 10.3 and 10.4 Two rigid bars AC and BC are...Ch. 10.1 - 10.3 and 10.4 Two rigid bars AC and BC are...Ch. 10.1 - The steel rod BC is attached to the rigid bar AB...Ch. 10.1 - The rigid rod AB is attached to a hinge at A and...Ch. 10.1 - The rigid bar AD is attached to two springs of...Ch. 10.1 - A frame consists of four L-shaped members...Ch. 10.1 - Determine the critical load of a pin-ended steel...Ch. 10.1 - Determine the critical load of a pin-ended wooden...
Ch. 10.1 - A column of effective length L can be made by...Ch. 10.1 - A compression member of 1.5-m effective length...Ch. 10.1 - Determine the radius of the round strut so that...Ch. 10.1 - Determine (a) the critical load for the square...Ch. 10.1 - A column with the cross section shown has a...Ch. 10.1 - A column is made from half of a W360 216...Ch. 10.1 - A column of 22-ft effective length is made by...Ch. 10.1 - A single compression member of 8.2-m effective...Ch. 10.1 - Knowing that P = 5.2 kN, determine the factor of...Ch. 10.1 - Members AB and CD are 30-mm-diameter steel rods,...Ch. 10.1 - The uniform brass bar AB has a rectangular cross...Ch. 10.1 - A 1-in.-square aluminum strut is maintained in the...Ch. 10.1 - A 1-in.-square aluminum strut is maintained in the...Ch. 10.1 - Column ABC has a uniform rectangular cross section...Ch. 10.1 - Column ABC has a uniform rectangular cross section...Ch. 10.1 - Column AB carries a centric load P of magnitude 15...Ch. 10.1 - Each of the five struts shown consists of a solid...Ch. 10.1 - A rigid block of mass m can be supported in each...Ch. 10.2 - An axial load P = 15 kN is applied at point D that...Ch. 10.2 - An axial load P is applied to the 32-mm-diameter...Ch. 10.2 - The line of action of the 310-kN axial load is...Ch. 10.2 - Prob. 32PCh. 10.2 - An axial load P is applied to the 32-mm-square...Ch. 10.2 - Prob. 34PCh. 10.2 - Prob. 35PCh. 10.2 - Prob. 36PCh. 10.2 - Solve Prob. 10.36, assuming that the axial load P...Ch. 10.2 - The line of action of the axial load P is parallel...Ch. 10.2 - Prob. 39PCh. 10.2 - Prob. 40PCh. 10.2 - The steel bar AB has a 3838-in. square cross...Ch. 10.2 - For the bar of Prob. 10.41, determine the required...Ch. 10.2 - A 3.5-m-long steel tube having the cross section...Ch. 10.2 - Prob. 44PCh. 10.2 - An axial load P is applied to the W8 28...Ch. 10.2 - Prob. 46PCh. 10.2 - A 100-kN axial load P is applied to the W150 18...Ch. 10.2 - A 26-kip axial load P is applied to a W6 12...Ch. 10.2 - Prob. 49PCh. 10.2 - Axial loads of magnitude P = 84 kN are applied...Ch. 10.2 - An axial load of magnitude P = 220 kN is applied...Ch. 10.2 - Prob. 52PCh. 10.2 - Prob. 53PCh. 10.2 - Prob. 54PCh. 10.2 - Axial loads of magnitude P = 175 kN are applied...Ch. 10.2 - Prob. 56PCh. 10.3 - Using allowable stress design, determine the...Ch. 10.3 - Prob. 58PCh. 10.3 - Prob. 59PCh. 10.3 - A column having a 3.5-m effective length is made...Ch. 10.3 - Prob. 61PCh. 10.3 - Bar AB is free at its end A and fixed at its base...Ch. 10.3 - Prob. 63PCh. 10.3 - Prob. 64PCh. 10.3 - A compression member of 8.2-ft effective length is...Ch. 10.3 - A compression member of 9-m effective length is...Ch. 10.3 - A column of 6.4-m effective length is obtained by...Ch. 10.3 - A column of 21-ft effective length is obtained by...Ch. 10.3 - Prob. 69PCh. 10.3 - Prob. 70PCh. 10.3 - Prob. 71PCh. 10.3 - Prob. 72PCh. 10.3 - Prob. 73PCh. 10.3 - For a rod made of aluminum alloy 2014-T6, select...Ch. 10.3 - Prob. 75PCh. 10.3 - Prob. 76PCh. 10.3 - A column of 4.6-m effective length must carry a...Ch. 10.3 - A column of 22.5-ft effective length must carry a...Ch. 10.3 - Prob. 79PCh. 10.3 - A centric load P must be supported by the steel...Ch. 10.3 - A square steel tube having the cross section shown...Ch. 10.3 - Prob. 82PCh. 10.3 - Prob. 83PCh. 10.3 - Two 89 64-mm angles are bolted together as shown...Ch. 10.3 - Prob. 85PCh. 10.3 - Prob. 86PCh. 10.3 - Prob. 87PCh. 10.3 - Prob. 88PCh. 10.4 - An eccentric load is applied at a point 22 mm from...Ch. 10.4 - Prob. 90PCh. 10.4 - Prob. 91PCh. 10.4 - Solve Prob. 10.91 using the interaction method and...Ch. 10.4 - A column of 5.5-m effective length is made of the...Ch. 10.4 - Prob. 94PCh. 10.4 - A steel compression member of 9-ft effective...Ch. 10.4 - Prob. 96PCh. 10.4 - Two L4 3 38-in. steel angles are welded together...Ch. 10.4 - Solve Prob. 10.97 using the interaction method...Ch. 10.4 - A rectangular column is made of a grade of sawn...Ch. 10.4 - Prob. 100PCh. 10.4 - Prob. 101PCh. 10.4 - Prob. 102PCh. 10.4 - Prob. 103PCh. 10.4 - Prob. 104PCh. 10.4 - A steel tube of 80-mm outer diameter is to carry a...Ch. 10.4 - Prob. 106PCh. 10.4 - Prob. 107PCh. 10.4 - Prob. 108PCh. 10.4 - Prob. 109PCh. 10.4 - Prob. 110PCh. 10.4 - Prob. 111PCh. 10.4 - Prob. 112PCh. 10.4 - Prob. 113PCh. 10.4 - Prob. 114PCh. 10.4 - Prob. 115PCh. 10.4 - A steel column of 7.2-m effective length is to...Ch. 10 - Determine (a) the critical load for the steel...Ch. 10 - Prob. 118RPCh. 10 - Prob. 119RPCh. 10 - (a) Considering only buckling in the plane of the...Ch. 10 - Member AB consists of a single C130 3 10.4 steel...Ch. 10 - The line of action of the 75-kip axial load is...Ch. 10 - Prob. 123RPCh. 10 - Prob. 124RPCh. 10 - A rectangular column with a 4.4-m effective length...Ch. 10 - Prob. 126RPCh. 10 - Prob. 127RPCh. 10 - Prob. 128RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A pin-connected truss is loaded and supported as shown. Each aluminum member has a cross-sectional area of A = 2.1 in.². Assume a = 4.50 ft and b = 5.40 ft. If the normal stress in each member must not exceed 45 ksi, determine the maximum load Pmax that may be supported by the structure. Answer: Pmax= b B E b kipsarrow_forwardA pin-connected truss is loaded and supported as shown. Each aluminum member has a cross-sectional area of A = 3.7 in.². Assume a = 3.25 ft and b = 3.90 ft. If the normal stress in each member must not exceed 35 ksi, determine the maximum load Pmax that may be supported by the structure. A B b b Answer: Pmax= kipsarrow_forwardA timber column, 8in. by 8in. in cross section is reinforced on all four sides by steel plates, each plate being 8in. wide and "t"in. thick. Determine the smallest value of "t" for which the column can support an axial load of 300 kips if the working stresses are 1200psi for timber and 20ksi for steel. The moduli of elasticity are 1.5x10^6psi for timber and 29x10^6psi foe steel -Draw and label the diagram correctly, No diagram in the solution will be marked wrong. -Shortcut solution will be marked wrong.- Direction of the assumption of the equilibrium equation must be shown, no direction will be marked wrong.arrow_forward
- The rigid beam BC is supported by rods (1) and (2). The cross-sectional area of rod (1) is 8 mm². The cross-sectional area of rod (2) is 17 mm². For a uniformly distributed load of w = 2.8 kN/m, determine the length a so that the normal stress is the same in each rod. Assume L = 4.20 m. (1) B Answer: a = i L W E 2arrow_forwardA 10-mm diameter steel bolt is surrounded by bronze sleeve. The outer diameter of the bronze sleeve is 20 mm and its inner diameter is 10-mm. Given that the yield stress for the steel is 640 MPa and the yield stress for the bronze is 520 MPa, determine the magnitude of the maximum allowable total load that can be applied to this assembly. (Assume full bond between the steel and the bronze sleeve) Esteel = 200 GPa, Ebronze = 100 GPa, Factor of safety = 1.5arrow_forwardThe system shown to the right is made of two members, Member AC is completely rigid (it will not deform), and member BD is made from 6061-T6 AI Extrusion, has a length of 12", and has a cross sectional area of 2.0 in?. When a load of P=10,000 Ibs is applied, determine (a) the load in member BD, (b) the stress in member BD, (c) the strain in member BD, (d) the deflection of point B, (e) The lateral strain in member BD, and (f) the margin of safety for tension of member BD. 20". 15" A P.arrow_forward
- Two tempered-steel bars, each in. thick, are bonded to a 1/2 -in. mild-steel bar. This composite bar is subjected as shown to a centric axial load of magnitude P. Both steels are elastoplastic with E= 29 × 106 psi and with yield strengths equal to 100 ksi and 50 ksi, respectively, for the tempered and mild steel. Determine the residual stresses in the tempered-steel bars if the load P is gradually increased from zero until the deformation of the bar reaches a maximum value 5m = 0.04 in. and is then decreased back to zero. Take L = 17 in. 2.0 in. in. 33 in. 3 16 in. The residual stress in the tempered-steel bars is ksi.arrow_forwardA pin-connected truss is loaded and supported as shown. Each aluminum member has a cross-sectional area of A = 3.6 in.?. Assume a = 4.75 ft and b = 5.7O ft. If the normal stress in each member must not exceed 55 ksi, determine the maximum load Pmax that may be supported by the structure. b Answer: Pmax = i kipsarrow_forwardA steel rod of 30 mm diameter is enclosed centrally in a hollow copper tube of external diameter 40 mm and 5 mm thick. The composite bar is then subjected to an axial pull of 45 kN. If the length of the compound rod is 150 mm , and the elasticity moduli are Est = 200 GPa and Ecu = 100 GPa , determine: 1.2.2 The load carried by the rod and that carried by the tubearrow_forward
- 1. A 60-mm diameter steel tube with a wall thickness of 3 mm just fits in a rigid hole. Determine the tangential stress developed if an axial compressive load of 12 kN is applied. Use v = 0.30 and E = 200 GPa. Answer: 0 = 6.37 MPa 2. A 200-mm long bronze tube closed at both ends fits without clearance in a 70-mm hole in a rigid block. It has a diameter of 70 mm and a wall thickness of 5 mm. The tube then sustained an internal pressure of 4.5 MPa. Use v = 0.33 and E= 83 GPa. Compute the tangential stress in the tube. Answer: Ot = 5.20 MPaarrow_forwardA lightweight lever consists of a 0.8m solid bar rigidly mounted to a large structure and a 0.5m solid lever welded to the solid bar. Using the loading indicated and assuming the material has a Young's Modulus of 200 GPa and a shear modulus of 86 GPa, calculate: (a) the maximum stress at Point A on the Cross-section a-a, (b) the vertical displacement of the knob when the load is applied relative to Cross-section a-a. B C 50 mm Section ad a 0.8 m 0.5 m 100 N 38 mm Focusarrow_forwardThe rigid beam BCis supported by rods (1) and (2). The cross-sectional area of rod (1) is 10 mm?. The cross- sectional area of rod (2) is 17 mm?. For a uniformly distributed load of w = 4.2 kN/m, determine the length a so that the normal stress is the same in each rod. Assume L= 4.85 m. (1) (2) B |Carrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Column buckling; Author: Amber Book;https://www.youtube.com/watch?v=AvvaCi_Nn94;License: Standard Youtube License