The Heart of Mathematics: An Invitation to Effective Thinking
4th Edition
ISBN: 9781118156599
Author: Edward B. Burger, Michael Starbird
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10.1, Problem 19MS
Fair wheeling. You are at the roulette table and bet $100 on red 9. What payoff should you received to make the game fair? (See Mindscape 18.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A game involves drawing a single card from a standard deck. The player receives $10 for an ace, $5 for a king, and $1 for a red card that is neither an ace nor a king. Otherwise, the player receives nothing. If the cost of each draw is $2, should you play? Explain your answer mathematically.
Help me fast so that I will give Upvote.
2. You play a game in which 40% of the time you win $3 and 40% of the time you lose $5 and 20% of the time you win $1. Please
show your work.
Chapter 10 Solutions
The Heart of Mathematics: An Invitation to Effective Thinking
Ch. 10.1 - What do you expect? How do you compute an expected...Ch. 10.1 - The average bite. Your little sister loves visits...Ch. 10.1 - A tooth for a tooth? Suppose your cousins Tooth...Ch. 10.1 - Spinning wheel. Suppose the spinner shown is...Ch. 10.1 - Fair game. What does it mean for a game to be...Ch. 10.1 - Cross on the green (S). A standard roulette wheel...Ch. 10.1 - In the red. Given the bet from Mindscape 6, what...Ch. 10.1 - Free Lotto. For several years in Massachusetts,...Ch. 10.1 - Bank value. What is the expected value of keeping...Ch. 10.1 - Value of money. In Newcombs Paradox, first suppose...
Ch. 10.1 - Die roll. What is the expected value of each of...Ch. 10.1 - Dice roll (ExH). What is the expected value of...Ch. 10.1 - Fair is foul. Someone has a weighted coin that...Ch. 10.1 - Foul is fair (S). Someone has a weighted coin that...Ch. 10.1 - Cycle cycle (H). You live in an area where the...Ch. 10.1 - Whats your pleasure? You have three options for...Ch. 10.1 - Roulette expectation. A standard roulette wheel...Ch. 10.1 - Fair wheeling. You are at the roulette table and...Ch. 10.1 - High rolling (H). Here is a die game you play...Ch. 10.1 - Fair rolling. Suppose you are considering the game...Ch. 10.1 - Spinning wheel. You pay $5, pick one of the four...Ch. 10.1 - Dice (ExH). You place a bet and then roll two fair...Ch. 10.1 - Uncoverable bases. Show by a specific example how...Ch. 10.1 - Under the cap. A national soda company runs a...Ch. 10.1 - Two coins in a fountain. You pay Si for two coins...Ch. 10.1 - Three coins in a fountain. You pay $5 for three...Ch. 10.1 - Insure (S). You own a $9000 car and a $850...Ch. 10.1 - Get a job (H). You search for a job. Three...Ch. 10.1 - Take this job and... Given the employment scenario...Ch. 10.1 - Book value. Refer back to our analysis of the...Ch. 10.1 - In search of... A group of deep-sea divers...Ch. 10.1 - Solid gold. There is a 50% chance that the price...Ch. 10.1 - Four out of five. In Newcombs Paradox, suppose...Ch. 10.1 - Chevalier de Méré. Suppose that the Chevalier de...Ch. 10.1 - The St. Petersburg paradox. Here is an interesting...Ch. 10.1 - Coin or god. In Newcombs Paradox, first suppose...Ch. 10.1 - An investment. You wish to invest $1000, and you...Ch. 10.1 - Pap test (H). Assume that the insurance value of a...Ch. 10.1 - Prob. 40MSCh. 10.1 - Spin to win. To play a certain carnival game, you...Ch. 10.1 - Spinner winner. To play a different carnival game,...Ch. 10.1 - Insurance wagering (H). From the point of view of...Ch. 10.1 - Probable cause. Continuing the scenario from the...Ch. 10.1 - The bicycle thief. Some entrepreneurial classmates...Ch. 10.2 - Remarkably risky. List two activities that are...Ch. 10.2 - Surprisinly safe. List two activities that are...Ch. 10.2 - Infectious numbers (H). Suppose a disease is...Ch. 10.2 - SARS scars (S). Suppose a new vaccine that...Ch. 10.2 - A hairy pot. At a certain famous school of...Ch. 10.2 - Blonde, bleached blonde (H). You have high...Ch. 10.2 - Blonde again (S). Given the scenario in Mindscape...Ch. 10.2 - Bleached again. Given the scenario in Mindscape 6,...Ch. 10.2 - Safety first. Suppose a particular car is widely...Ch. 10.2 - Scholarship winner (ExH). You apply for a national...Ch. 10.2 - Less safe (ExH). Given the scenario in our air...Ch. 10.2 - Aw, nuts! Suppose that the loss of life expectancy...Ch. 10.2 - Dont cell! (H) Suppose you are a U.S. senator and...Ch. 10.2 - Buy low and cell high (H). The microwaves produced...Ch. 10.2 - Taxi blues (H). An eyewitness observes a...Ch. 10.2 - More taxi blues (S). An eyewitness observes a...Ch. 10.2 - Few blues. An eyewitness observes a hit-and-run...Ch. 10.2 - More safety. Given the scenario of our earlier air...Ch. 10.2 - Reduced safety. Given the scenario of our air...Ch. 10.2 - HIV tests. Recall that, in the United States,...Ch. 10.2 - More HIV tests. Given the tests described in the...Ch. 10.2 - Super sale. The bookstore is having a super sale...Ch. 10.2 - V.isk risk (H). You always sort your laundry into...Ch. 10.2 - Bag for life. An insurance company estimates that...Ch. 10.2 - Mooving sale. Plush toy versions of your college...Ch. 10.2 - Reweighing life expectancy An example in this...Ch. 10.3 - Simple interest (H). Suppose you deposit $500 into...Ch. 10.3 - Less simple interest. Suppose that at the...Ch. 10.3 - The power of powers (H). In this section we...Ch. 10.3 - Crafty compounding. Two thousand years ago, a...Ch. 10.3 - Keg costs. List some of the opportunity costs...Ch. 10.3 - You can bank on us (or them) (S). You wish to...Ch. 10.3 - The Kennedy compound. You wish to ivest $1000 for...Ch. 10.3 - Three times a lady. The Three-Timesa-Year Savings...Ch. 10.3 - Baker kneads dough (ExH). Your favorite baker,...Ch. 10.3 - I want my ATV! You want to purchase a cool, yellow...Ch. 10.3 - Lottery loot later? You have a big problem: Youve...Ch. 10.3 - Open sesame (S). Bert and Ernie each open a...Ch. 10.3 - Jelly-filled investments (H). Suppose you purchase...Ch. 10.3 - Taking stock. Suppose that a stock transaction...Ch. 10.3 - Making your pocketbook stocky. Suppose that a...Ch. 10.3 - Money-tree house. You decide you wish to build...Ch. 10.3 - Future vlaue (S). What is the future value of $...Ch. 10.3 - Present value (ExH). On the first day of your...Ch. 10.3 - Double or nothing (H). You decide you wish to...Ch. 10.3 - Triple or nothing. You decide you wish to triple...Ch. 10.3 - Power versus product (S). In this section we...Ch. 10.3 - Double vision. Suppose we have $P and we invest it...Ch. 10.3 - Adding up the bucks (H). You have a job every...Ch. 10.3 - Fiddling for dollars. As presented in the section...Ch. 10.3 - Facebank. Your roommates are developing some...Ch. 10.3 - Boatload o cash. At age 12 you dream of sailing...Ch. 10.3 - Houseload o cash. You want to buy a house by age...Ch. 10.4 - Landslide Lyndon. The two candidates in the 1948...Ch. 10.4 - Electoral college. Briefly outline a voting scheme...Ch. 10.4 - Voting for voting. What are some differences...Ch. 10.4 - Voting for sport. Given an example (ideally from...Ch. 10.4 - The point of the arrow (S). What does Arrows...Ch. 10.4 - Dictating an election through a dictator. Suppose...Ch. 10.4 - Pro- or Con-dorcet? (S) Consider the following...Ch. 10.4 - Where is Dr. Pepper? (S) Given the voting data...Ch. 10.4 - Approval drinking (H). Returning to the voting...Ch. 10.4 - Mindscapes 10 through 15 are based on the...Ch. 10.4 - Mindscapes 10 through 15 are based on the...Ch. 10.4 - Mindscapes 10 through 15 are based on the...Ch. 10.4 - Mindscapes 10 through 15 are based on the...Ch. 10.4 - Mindscapes 10 through 15 are based on the...Ch. 10.4 - Mindscapes 10 through 15 are based on the...Ch. 10.4 - Whats it all about, Ralphie? Many people believe...Ch. 10.4 - Two, too (ExH). Given an election between just two...Ch. 10.4 - Two, too II (ExH). Given an election between just...Ch. 10.4 - Instant runoffs. One way to avoid the lengthy...Ch. 10.4 - Run runoff. Given the method of instant runoff...Ch. 10.4 - Coin coupling. For this challenge, you will need...Ch. 10.4 - From money-mating to cupids arrow. Explain how the...Ch. 10.4 - Vote night. There are four candidates running for...Ch. 10.4 - Wroof recount. The election in the previous...Ch. 10.4 - Biggest loser? Who was the biggest loser in the...Ch. 10.4 - The X-act winner. Your schools math club has 73...Ch. 10.4 - Borda rules. Candidates A, B, and C are running...Ch. 10.5 - Prob. 1MSCh. 10.5 - Understanding icing (S). Suppose a person who had...Ch. 10.5 - Liquid gold. Suppose you and your two brothers are...Ch. 10.5 - East means West. Suppose you have a triangular...Ch. 10.5 - Two-bedroom bliss (H). Suppose you and a roommate...Ch. 10.5 - Your preference. Suppose the accompanying figure...Ch. 10.5 - Bulk. Suppose for you, bigger is better, so your...Ch. 10.5 - Dont move that knif. Give a specific scenario to...Ch. 10.5 - Prob. 9MSCh. 10.5 - Just do it. Get three people together and have...Ch. 10.5 - The real world. Give three real-world examples...Ch. 10.5 - Same tastes (H). If you are dividing a cake among...Ch. 10.5 - Crossing the line. In each triangle shown on the...Ch. 10.5 - Cutting up Mass (S). You, Joan, and John want to...Ch. 10.5 - Where to cut (H). The accompanying figure pictures...Ch. 10.5 - Land preference (ExH). Suppose you are preparing...Ch. 10.5 - Uneven pair (S). Suppose two people want to divide...Ch. 10.5 - Diversity pays. Explain why having differences of...Ch. 10.5 - Be fair. The moving-knife and yelling Stop method...Ch. 10.5 - Nuclear dump (ExH). Suppose there is a nuclear...Ch. 10.5 - Disarming (H). Two nuclear superpowers decide to...Ch. 10.5 - Cupcakes. Suppose you had 100 different cupcakes...Ch. 10.5 - Barely consistent. It is possible for Chris to...Ch. 10.5 - Your X. You and your ex-roommate happen to share a...Ch. 10.5 - Musical Xs. You play the violin in a chamber trio...Ch. 10.5 - Cake plot. Imagine a cake in the shape of a...Ch. 10.5 - Cake trisection. Imagine a cake in the shape of a...Ch. 10.5 - Roomate wrangling. You and a friend rent a...
Additional Math Textbook Solutions
Find more solutions based on key concepts
Find the errors in each of the following statements:
The probabilities that an automobile salesperson will sell...
Probability and Statistics for Engineers and Scientists
Percentiles. The pth percentile of a sorted data set is a number xp such that p of the data fall at or below xp...
Excursions in Modern Mathematics (9th Edition)
CHECK POINT I Let p and q represent the following statements: p : 3 + 5 = 8 q : 2 × 7 = 20. Determine the truth...
Thinking Mathematically (7th Edition)
The table by using the given graph of h.
Calculus for Business, Economics, Life Sciences, and Social Sciences (13th Edition)
Write a sentence that illustrates the use of 78 in each of the following ways. a. As a division problem. b. As ...
A Problem Solving Approach to Mathematics for Elementary School Teachers (12th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- One option in a roulette game is to bet $7 on red. (There are 18 red compartments, 18 black compartments, and two compartments that are neither red nor black.) If the ball lands on red, you get to keep the $7 you paid to play the game and you are awarded $7. If the ball lands elsewhere, you are awarded nothing and the $7 that you bet is collected. Complete parts (a) through (b) below. III a. What is the expected value for playing roulette if you bet $7 on red? $ (Round to the nearest cent.) b. What does this expected value mean? Choose the correct statement below. O A. This value represents the expected loss over the long run for each game played. OB. Over the long run, the player can exper to break even. OC. This value represents the expected win over the long run for each game played.arrow_forwardPart 2: Carnival Games At the carnival, you may remember a game where you throw darts to pop two balloons from a wall. The balloons may have prize tokens. For the next player... • There are 50 balloons on the wall and 21 of them each contain a prize token. • The next player pays $2 and gets to throw darts until they pop 2 balloons. Their winnings are based on how many prize tokens they collect. See the table below. Note: The payout of tokens does NOT take into consideration the $2 the player paid. Find the expected value for this game for the next player. Find who the game favors. Complete the tree diagram using non-simplified fractions to label the probabilities. Use T for token and NT for no token. On the right of the tree, list the four outcomes and their final probabilities using non-simplified fractions. Check these add to one. START 1 balloon with a token (T) Use the outcomes' probabilities from the tree to find the expected value of this game. Use all four probabilities in the…arrow_forwardA game consists of rolling a colored die with three red sides, two green sides, and one blue side. A roll of red loses. A roll of green pays $2.00. A roll of blue pays $5.00. The charge to play the game is $2.00. Would you play the game? Why or why not?arrow_forward
- You and your friends decide to play a game. You are rolling a die. If you roll a 6, you win $5. If you roll a 1, 3, or 5, you win $3. If you roll a 2, you win $4. If you roll a 4, you win $1. You only want to play the game if your expected payout is more than $3.50. Should you play the game? Show work to support the answer.arrow_forwardSuppose you decided to play a gambling game. In order to play the game there is a $1.50 dollar fee to play. If you roll a 1, 2, or 3 you win nothing (i.e., your net profit is $-1.50). If you roll a 4 or 5, you win $3.50 (i.e., your net profit is $2.00). If you roll a 6 you win $5.00 (i.e., your net profit is $3.50).Use the information described above to construct a probability distribution table for the random variable xx which represents the net profit of your winnings. Note: Be sure to enter your probabilities as reduced fractions. Die Roll xx P(x) Roll a 1, 2, or 3 Roll a 4 or 5 Roll a 6 Find the amount you would expect to win or lose each time you played the game. Round your final answer to two decimal places.μ=arrow_forwardYou are playing a game in which a single die is rolled. If a 2 or a 5 come up, you win $60; otherwise, you lose $3. What is the price that you should pay to play the game that would make the game fair?arrow_forward
- you are playing a game in which a single die is rolled. if a 2 or a 5 comes up, you win $24, otherwise you lose $3. what is the price that you should pay to play game that would make the game fair?arrow_forwardSupposed a certain game is fair and costs $7 if you lose and has a net payoff of $10 if you win. The only possible outcomes of the game are winning and losing.arrow_forwardSuppose you decided to play a gambling game. In order to play the game there is a $1.00 dollar fee to play. If you roll a 1, 2, or 3 you win nothing (i.e., your net profit is $-1.00). If you roll a 4 or 5, you win $2.50 (i.e., your net profit is $1.50). If you roll a 6 you win $4.00 (i.e., your net profit is $3.00).Use the information described above to construct a probability distribution table for the random variable xx which represents the net profit of your winnings. Note: Be sure to enter your probabilities as reduced fractions. Die Roll xx P(x)P(x) Roll a 1, 2, or 3 Roll a 4 or 5 Roll a 6 Find the amount you would expect to win or lose each time you played the game. Round your final answer to two decimal places.μ=arrow_forward
- Can you explain it step by step? Thank youarrow_forwardA game costs $2.00 to play. In the game, the player picks a card at random from a standard deck of cards. If the card is a face card, the player receives $6.00, if the card is not a face card, the player receives nothing.arrow_forwardSuppose you decided to play a gambling game. In order to play the game there is a $1.50 dollar fee to play. If you roll a 1, 2, or 3 you win nothing (i.e., your net profit is $-1.5 dollars). If you roll a 4 or 5, you win $2.50 (i.e., your net profit is $1). If you roll a 6 you win $5.75 (i.e., your net profit is $4.25).a) Use the information described above to constuct a probability distribution table for the random variable xx which represents the net profit of your winnings. Note: Be sure to enter your probabilities as reduced fractions. xx P(x)P(x) (You roll a 1,2,or 3) (You roll a 1,2, or 3) (You roll a 4 or 5) (You roll a 4 or 5) (You roll a 6) (You roll a 6) b) Find the amount you would expect to win or lose each time you played the game. Round your final answer to two decimal places.μ=arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Solve ANY Optimization Problem in 5 Steps w/ Examples. What are they and How do you solve them?; Author: Ace Tutors;https://www.youtube.com/watch?v=BfOSKc_sncg;License: Standard YouTube License, CC-BY
Types of solution in LPP|Basic|Multiple solution|Unbounded|Infeasible|GTU|Special case of LP problem; Author: Mechanical Engineering Management;https://www.youtube.com/watch?v=F-D2WICq8Sk;License: Standard YouTube License, CC-BY
Optimization Problems in Calculus; Author: Professor Dave Explains;https://www.youtube.com/watch?v=q1U6AmIa_uQ;License: Standard YouTube License, CC-BY
Introduction to Optimization; Author: Math with Dr. Claire;https://www.youtube.com/watch?v=YLzgYm2tN8E;License: Standard YouTube License, CC-BY