Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
4th Edition
ISBN: 9780135264669
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 66P
A 50-kg mass is tied to a massless rope wrapped around a solid cylindrical drum, mounted on a frictionless horizontal axle. When the mass is released, it falls with acceleration a = 3.7 m/s2. Find (a) the rope tension and (b) the drum’s mass.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 15.0-kg bucket of water is suspended by a very light rope wrapped around a
solid uniform cylinder 0.300 m in diameter with mass 12.0 kg. The cylinder
pivots on a frictionless axle through its center. The bucket is released from rest
at the top of a well and falls 10.0 m to the water. (a) What is the tension in the rope while
the bucket is falling? (b) With what speed does the bucket strike the water? (c) write the
kinetic equation as the bucket sink into the water, suppose the resistance force is
proportional to the speed, the volume of bucket is V, and draw the free-body diagram.
A person pushing a uniformly-loaded 30.2 kg wheelbarrow of length L with pushing force P is attempting to get it over a step.
The maximum horizontal force that the person can apply is Px = 553 N. What is the maximum height h of the step, expressed
as a fraction n of the wheel's radius R, that the person can get the wheelbarrow over?
The gravitational acceleration is g = 9.81 m/s².
10
P
L
R
h = nR
h =
R
An air puck of mass ml is tied to a string and allowed to revolve in a circle of radius R 5 1.0 m on a
frietionless horizontal table. The other end of the string passes through a hole in the center of the table,
and a mass of m2 is tied to it. The suspended mass remains in equilibrium while the puck on the tabletop
revolves.
Verify that ml =0.25 kg on the table top has v= 6.3 m/s when R 1 meter and m2
1 kg
Chapter 10 Solutions
Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
Ch. 10.1 - A wheel undergoes constant angular acceleration,...Ch. 10.2 - The forces in Figs. 10.5 and 10.6 all have the...Ch. 10.3 - Would the rotational inertia of the two-mass...Ch. 10.3 - Explain why the rotational inertia of the solid...Ch. 10.3 - The figure shows two identical masses m connected...Ch. 10.4 - A wheel is rotating at 100 rpm. To spin it up to...Ch. 10.5 - The wheels of trains, subway cars, and other rail...Ch. 10 - Do all points on a rigid, rotating object have the...Ch. 10 - A point on the rim of a rotating wheel has nonzero...Ch. 10 - Why doesnt it make sense to talk about a bodys...
Ch. 10 - Two forces act on an object, but the net force is...Ch. 10 - Is it possible to apply a counterclockwise torque...Ch. 10 - A solid sphere and a hollow sphere of the same...Ch. 10 - A solid cylinder and a hollow cylinder of the same...Ch. 10 - A circular saw lakes a long time to stop rotating...Ch. 10 - A solid sphere and a solid cube have the same...Ch. 10 - The lower part of a horses leg contains...Ch. 10 - Given a fixed amount of a material, what shape...Ch. 10 - A ball starts from rest and rolls without slipping...Ch. 10 - Exercises and Problems Exercises Section 10.1...Ch. 10 - Whats the linear speed of a point (a) on Earths...Ch. 10 - Express each of the following in radians per...Ch. 10 - A 25-cm-diameter circular saw blade spins at 3500...Ch. 10 - A compact discs rotation varies from about 200 rpm...Ch. 10 - During startup, a power plants turbine accelerates...Ch. 10 - A merry-go-round starts front rest and accelerates...Ch. 10 - Section 10.2 Torque A 320-N frictional force acts...Ch. 10 - A 110-N m torque is needed to start a revolving...Ch. 10 - A car tune-up manual calls for tightening the...Ch. 10 - A 55-g mouse runs out to the end of the 17-cm-long...Ch. 10 - You have your bicycle upside down for repairs. The...Ch. 10 - Section 10.3 Rotational Inertia and the Analog of...Ch. 10 - The shaft connecting a power plants turbine and...Ch. 10 - The chamber of a rock-tumbling machine is a hollow...Ch. 10 - A wheels diameter is 92 cm, and its rotational...Ch. 10 - Three equal masses m are located at the vertices...Ch. 10 - (a) Estimate Earths rotational inertia, assuming...Ch. 10 - A neutron star is an extremely dense, rapidly...Ch. 10 - A 108-g Frisbee is 24 cm in diameter and has half...Ch. 10 - At the MIT Magnet Laboratory, energy is stored in...Ch. 10 - Section 10.4 Rotational Energy A 25-cm-diameter...Ch. 10 - Humankind uses energy at the rate of about 16 TW....Ch. 10 - A 150-g baseball is pitched at 33 m/s spinning at...Ch. 10 - (a) Find the energy stored in the flywheel of...Ch. 10 - A solid 2.4-kg sphere is rolling at 5.0 m/s. Find...Ch. 10 - What fraction of a solid disks kinetic energy is...Ch. 10 - A rolling ball has total kinetic energy 100 J, 40...Ch. 10 - A wheel turns through 2.0 revolutions while...Ch. 10 - Youre an engineer designing kitchen appliances,...Ch. 10 - An eagle with 2.1-m wingspan flaps its wings 20...Ch. 10 - A compact disc (CD) player varies the rotation...Ch. 10 - You rev your cars engine and watch the tachometer...Ch. 10 - A circular saw spins at 5800 rpm, and its...Ch. 10 - Full-circle rotation is common in mechanical...Ch. 10 - A pulley 12 cm in diameter is free to rotate about...Ch. 10 - A square frame is made from four thin rods, each...Ch. 10 - A thick ring has inner radius 12R, outer radius R,...Ch. 10 - A uniform rectangular flat plate has mass M and...Ch. 10 - Each propeller on a King Air twin-engine airplane...Ch. 10 - The cellular motor driving the flagellum in E....Ch. 10 - Verify by direct integration Table 10.2s entry for...Ch. 10 - Prob. 55PCh. 10 - A skaters body has rotational inertia 4.2 kgm2...Ch. 10 - A 2.4-kg block rests on a slope and is attached by...Ch. 10 - Youve got your bicycle upside down for repairs,...Ch. 10 - A potters wheel is a stone disk 90 cm in diameter...Ch. 10 - A ships anchor weighs 5.0kN. Its cable passes over...Ch. 10 - Starting from rest, a hollow ball rolls down a...Ch. 10 - A hollow ball rolls along a horizontal surface at...Ch. 10 - As an automotive engineer, youre charged with...Ch. 10 - A solid ball of mass M and radius R starts at rest...Ch. 10 - A disk of radius R has an initial mass M. Then a...Ch. 10 - A 50-kg mass is tied to a massless rope wrapped...Ch. 10 - Each wheel of a 320-kg motorcycle is 52 cm in...Ch. 10 - A solid marble starts from rest and rolls without...Ch. 10 - A disk of radius R and thickness w has a mass...Ch. 10 - The disk in Fig. 10.29 is rotating freely about a...Ch. 10 - Youre asked to check the specifications for a wind...Ch. 10 - In bicycling, each foot pushes on the pedal for...Ch. 10 - Calculate the rotational inertia of a solid,...Ch. 10 - A thick ring of mass M has inner radius R1 and...Ch. 10 - A thin rod of length L and mass M is free to pivot...Ch. 10 - The local historical society has asked your...Ch. 10 - Youre skeptical about a new hybrid car that stores...Ch. 10 - Figure 10.31 shows an object of mass M with one...Ch. 10 - Figure 10.32 shows an apparatus used to measure...Ch. 10 - Centrifuges are widely used in biology and...Ch. 10 - Centrifuges are widely used in biology and...Ch. 10 - Centrifuges are widely used in biology and...Ch. 10 - Centrifuges are widely used in biology and...Ch. 10 - Centrifuges are widely used in biology and...
Additional Science Textbook Solutions
Find more solutions based on key concepts
FOCUS ON INFORMATION In Bateslan mimicry, a palatable species gains protection by mimicking an unpalatable one....
Campbell Biology in Focus (2nd Edition)
2. Define equilibrium population. Outline the conditions that must be met for a population to stay in genetic e...
Biology: Life on Earth (11th Edition)
3. What are serous membranes, and what are their functions?
Human Anatomy & Physiology (2nd Edition)
What percentage of Earths land surface do glaciers presently cover? ____________
Applications and Investigations in Earth Science (9th Edition)
The following results were obtained from a broth dilution test for microbial susceptibility. Antibiotic Concent...
Microbiology: An Introduction
Body, Heal Thyself The precision of mitotic cell division is essential for repairing damaged tissues like those...
Biology: Life on Earth with Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A horizontal force of 170 N is required to push a 180-kg refrigerator across a level linoleum floor. The refrigerator rolls on four 50-mm-diameter plastic wheels. Neglect all friction except rolling resistance and determine the coefficient of rolling friction between the plastic wheels and the linoleum floor.arrow_forwardOf the two frictionless inclined planes with slopes of 30 ° and 53 °, masses m1 = 4kg on the first and m2 = 2kg on the second. These two masses are attached to the two ends of a rope passing through a reel of radius R = 50cm and moment of inertia I = 2 kg m2. Find the accelerations (the linear accelerations of the masses and the angular acceleration of the pulley) and the stresses in the rope. NOTE: The reel is rotating, the tensions in the rope are not equal.arrow_forwardA weight with mass ?w=250 g is tied to a piece of thread wrapped around a spool, which is suspended in such a way that it can rotate freely. When the weight is released, it accelerates toward the floor as the thread unwinds. Assume that the spool can be treated as a uniform solid cylinder of radius ?=4.00 cm and mass ?s=100 g. Find the magnitude of the acceleration of the weight as it descends. Assume the thread has negligible mass and does not slip or stretch as it unwinds. Find the tension in the thread.arrow_forward
- A solid cylinder has length L = 14 cm and radius R = 2 cm. The center of one face of the cylinder is located at the origin and the cylinder’s axis lies along the positive x-axis. The mass density of the cylinder varies along its length and is given by the function: ρ(x) = Ax2 + Bx + C, where A = 13.5 kg/m5, B = 5.2 kg/m4, and C = 14.2 kg/m3. Consider a thin slice of the cylinder that is a disk located at distance x from the origin and having thickness dx. Enter an expression for the mass of this disk in terms of the defined quantities and dx. Integrate the expression you entered in part (a) and enter an expression for the mass of the whole cylinder in terms of the defined quantities. Calculate the mass of the cylinder, in grams. Enter an expression for the location of the cylinder’s center of mass along the x-axis, in terms of the defined quantities. Calculate the location of the cylinder’s center of mass along the x-axis, in centimeters.arrow_forwardProblem 1: Two uniform solid spheres, each with mass M = 0.80-kg and radius R = 0.080- m, are connected by a short, light rod that is along a diameter of each sphere and are at rest on a horizontal tabletop. A spring with force constant k 160 N has one end m attached to the wall and the other end attached to a frictionless ring that passes over the rod at the center of mass of the spheres, which is midway between the centers of the two spheres. The spheres are each pulled the same distance from the wall, stretching the spring, and released. There is sufficient friction between the tabletop and the spheres for the spheres to roll without slipping as the move back and forth on the end of the spring. Show that the motion of the center of mass of the spheres is SHM and find the period.arrow_forwardA block of mass m₁ = 1.60 kg and a block of mass m₂ = 5.75 kg are connected by a massless string over a pulley in the shape of a solid disk having a mass of M = 10.0 kg. The fixed, wedge-shaped ramp makes an angle of 8 = 30.0° as shown in the figure. The coefficient of kinetic friction is 0.360 for both blocks. M, R m₁ m2 (a) Determine the acceleration of the two blocks. (Enter the magnitude of the acceleration.) m/s² (b) Determine the tensions in the string on both sides of the pulley. left of the pulley N right of the pulley Narrow_forward
- The string is massless. The pulley turns on frictionless bearings. Moment of Inertia of the pulley about its axis is 0.0125 kg.m2, its radiusR= 10.0 cm. The mass m1= 5.00 kg, and the mass m2= 4.00 kg. The system is released from rest. Find (a) the acceleration of m1 and (b) the tensions, T1& T2, in the horizontal and vertical portions of the string. The horizontal surface below m1 is smooth.arrow_forwardplease answer this question within 30 minutes. i will upvote. Spherical particles of radius 4.50 x10-6 m are suspended in water and placed in a centrifuge. This centrifuge has a radius of 13.0 cm and spins at 255 Hz. If the terminal velocity of the particles is 2.00 m/s, what is their density? Answer in kg/m3 but do not include units in your answer.arrow_forwardA 1.01 kg mass is attached to a spring of force constant 10.4 N/cm and placed on a frictionless surface.By how much will the spring stretch if the mass moves along a circular path of radius 0.520 m at a rate of 1.82 revolutions per second?arrow_forward
- The frame is made from uniform rod which has a mass p per unit length. A smooth recessed slot constrains the small rollers at A and B to travel horizontally. Force P is applied to the frame through a cable attached to an adjustable collar C. Determine the magnitudes and directions of the normal forces which act on the rollers if (a) h = 0.24L, (b) h = 0.50L, and (c) h = 0.91L. The forces will be positive if up, negative if down. Evaluate your results for p = 1.8 kg /m, L = 575 mm, and P = 48 N. What is the acceleration of the frame in each case? (a) Answers: (b) L (c) A h = 0.24L: h = 0.50L: h = 0.91L: L A = A A = B i i i P B N₁ B N, B N, i i N₁ª N,9 N₁9 i i m/s m/s m/sarrow_forwardIn a laboratory experiment, a very large fish tank is filled with water. At the bottom of the tank, a rigid rod of length L is pinned to the frictionless floor and the other end is connected to a small object of mass m with a rocket nozzle on it. The rocket will exert a constant thrust force of magnitude F, directed in the tangential direction. The object will start from rest, rotating about a circle in the horizontal plane when the rocket motor is turned on. Since it is under water, the object experiences a drag force that depends linearly on the objects velocity D=-bỷ where b is a constant and v is the object's velocity vector (the minus sign just means that the drag force points in the direction OPPOSITE the object's velocity). a) Draw a complete FBD of the object while it is speeding up. Use an over-head view. b) “Fill out" Newton's 2nd law in the radial and tangential directions. Do NOT solve for anything. c) Newton's 2nd Law in the tangential direction gives you a differential…arrow_forwardPlease Asaparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Work and Energy - Physics 101 / AP Physics 1 Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=rKwK06stPS8;License: Standard YouTube License, CC-BY