Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
4th Edition
ISBN: 9780135264669
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10, Problem 68P
A solid marble starts from rest and rolls without slipping on the loop-the-loop track in Fig. 10.30. Find the minimum starting height from which the marble will remain on the track through the loop. Assume the marble’s radius is small compared with R.
FIGURE 10.30 Problem 68
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 10 Solutions
Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
Ch. 10.1 - A wheel undergoes constant angular acceleration,...Ch. 10.2 - The forces in Figs. 10.5 and 10.6 all have the...Ch. 10.3 - Would the rotational inertia of the two-mass...Ch. 10.3 - Explain why the rotational inertia of the solid...Ch. 10.3 - The figure shows two identical masses m connected...Ch. 10.4 - A wheel is rotating at 100 rpm. To spin it up to...Ch. 10.5 - The wheels of trains, subway cars, and other rail...Ch. 10 - Do all points on a rigid, rotating object have the...Ch. 10 - A point on the rim of a rotating wheel has nonzero...Ch. 10 - Why doesnt it make sense to talk about a bodys...
Ch. 10 - Two forces act on an object, but the net force is...Ch. 10 - Is it possible to apply a counterclockwise torque...Ch. 10 - A solid sphere and a hollow sphere of the same...Ch. 10 - A solid cylinder and a hollow cylinder of the same...Ch. 10 - A circular saw lakes a long time to stop rotating...Ch. 10 - A solid sphere and a solid cube have the same...Ch. 10 - The lower part of a horses leg contains...Ch. 10 - Given a fixed amount of a material, what shape...Ch. 10 - A ball starts from rest and rolls without slipping...Ch. 10 - Exercises and Problems Exercises Section 10.1...Ch. 10 - Whats the linear speed of a point (a) on Earths...Ch. 10 - Express each of the following in radians per...Ch. 10 - A 25-cm-diameter circular saw blade spins at 3500...Ch. 10 - A compact discs rotation varies from about 200 rpm...Ch. 10 - During startup, a power plants turbine accelerates...Ch. 10 - A merry-go-round starts front rest and accelerates...Ch. 10 - Section 10.2 Torque A 320-N frictional force acts...Ch. 10 - A 110-N m torque is needed to start a revolving...Ch. 10 - A car tune-up manual calls for tightening the...Ch. 10 - A 55-g mouse runs out to the end of the 17-cm-long...Ch. 10 - You have your bicycle upside down for repairs. The...Ch. 10 - Section 10.3 Rotational Inertia and the Analog of...Ch. 10 - The shaft connecting a power plants turbine and...Ch. 10 - The chamber of a rock-tumbling machine is a hollow...Ch. 10 - A wheels diameter is 92 cm, and its rotational...Ch. 10 - Three equal masses m are located at the vertices...Ch. 10 - (a) Estimate Earths rotational inertia, assuming...Ch. 10 - A neutron star is an extremely dense, rapidly...Ch. 10 - A 108-g Frisbee is 24 cm in diameter and has half...Ch. 10 - At the MIT Magnet Laboratory, energy is stored in...Ch. 10 - Section 10.4 Rotational Energy A 25-cm-diameter...Ch. 10 - Humankind uses energy at the rate of about 16 TW....Ch. 10 - A 150-g baseball is pitched at 33 m/s spinning at...Ch. 10 - (a) Find the energy stored in the flywheel of...Ch. 10 - A solid 2.4-kg sphere is rolling at 5.0 m/s. Find...Ch. 10 - What fraction of a solid disks kinetic energy is...Ch. 10 - A rolling ball has total kinetic energy 100 J, 40...Ch. 10 - A wheel turns through 2.0 revolutions while...Ch. 10 - Youre an engineer designing kitchen appliances,...Ch. 10 - An eagle with 2.1-m wingspan flaps its wings 20...Ch. 10 - A compact disc (CD) player varies the rotation...Ch. 10 - You rev your cars engine and watch the tachometer...Ch. 10 - A circular saw spins at 5800 rpm, and its...Ch. 10 - Full-circle rotation is common in mechanical...Ch. 10 - A pulley 12 cm in diameter is free to rotate about...Ch. 10 - A square frame is made from four thin rods, each...Ch. 10 - A thick ring has inner radius 12R, outer radius R,...Ch. 10 - A uniform rectangular flat plate has mass M and...Ch. 10 - Each propeller on a King Air twin-engine airplane...Ch. 10 - The cellular motor driving the flagellum in E....Ch. 10 - Verify by direct integration Table 10.2s entry for...Ch. 10 - Prob. 55PCh. 10 - A skaters body has rotational inertia 4.2 kgm2...Ch. 10 - A 2.4-kg block rests on a slope and is attached by...Ch. 10 - Youve got your bicycle upside down for repairs,...Ch. 10 - A potters wheel is a stone disk 90 cm in diameter...Ch. 10 - A ships anchor weighs 5.0kN. Its cable passes over...Ch. 10 - Starting from rest, a hollow ball rolls down a...Ch. 10 - A hollow ball rolls along a horizontal surface at...Ch. 10 - As an automotive engineer, youre charged with...Ch. 10 - A solid ball of mass M and radius R starts at rest...Ch. 10 - A disk of radius R has an initial mass M. Then a...Ch. 10 - A 50-kg mass is tied to a massless rope wrapped...Ch. 10 - Each wheel of a 320-kg motorcycle is 52 cm in...Ch. 10 - A solid marble starts from rest and rolls without...Ch. 10 - A disk of radius R and thickness w has a mass...Ch. 10 - The disk in Fig. 10.29 is rotating freely about a...Ch. 10 - Youre asked to check the specifications for a wind...Ch. 10 - In bicycling, each foot pushes on the pedal for...Ch. 10 - Calculate the rotational inertia of a solid,...Ch. 10 - A thick ring of mass M has inner radius R1 and...Ch. 10 - A thin rod of length L and mass M is free to pivot...Ch. 10 - The local historical society has asked your...Ch. 10 - Youre skeptical about a new hybrid car that stores...Ch. 10 - Figure 10.31 shows an object of mass M with one...Ch. 10 - Figure 10.32 shows an apparatus used to measure...Ch. 10 - Centrifuges are widely used in biology and...Ch. 10 - Centrifuges are widely used in biology and...Ch. 10 - Centrifuges are widely used in biology and...Ch. 10 - Centrifuges are widely used in biology and...Ch. 10 - Centrifuges are widely used in biology and...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Some organizations are starting to envision a sustainable societyone in which each generation inherits sufficie...
Campbell Essential Biology (7th Edition)
How does an obligate aerobe differ from a facultative aerobe?
Brock Biology of Microorganisms (15th Edition)
According to the logistic growth equation dNdt=rN(KN)K (A) the number of individuals added per unit time is gre...
Campbell Biology (11th Edition)
a. Which compound has the stretching vibration for its carbonyl group at the highest frequency: acetyl chloride...
Organic Chemistry (8th Edition)
27. Consider the reaction.
Express the rate of the reaction in terms of the change in concentration of each of...
Chemistry: Structure and Properties (2nd Edition)
Choose the best answer to each of the following. Explain your reasoning. Suppose you see a crescent moon; how m...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The precession angular velocity of a gyroscope is 1.0 rad/s. If the mass of the rotating disk is 0.4 kg and its radius is 30 cm, as well as the distance from the center of mass to the pivot, what is the rotation rate in rev/s of the disk?arrow_forwardTwo spheres, one hollow and one solid, are rotating with the same angular speed around an axis through their centers. Both spheres have the same mass and radius. Which sphere, if either, has the higher rotational kinetic energy? (a) The hollow I sphere, (b) The solid sphere, (c) They have the same kinetic energy.arrow_forwardA wheel starts from rest and in 12.65 s is rotating with an angular speed of 5.435 rad/s. a. Find the magnitude of theconstant angular acceleration of the wheel. b. Through whatangle does the wheel move in 6.325 s?arrow_forward
- A solid cylinder of radius 10.0 cm rolls down an incline with slipping. The angle of the incline is 30 . The coefficient of kinetic friction on the surface is 0.400. What is the angular acceleration of the solid cylinder? What is the linear acceleration?arrow_forwardA turntable (disk) of radius r = 26.0 cm and rotational inertia0.400 kg m2 rotates with an angular speed of 3.00 rad/s arounda frictionless, vertical axle. A wad of clay of mass m =0.250 kg drops onto and sticks to the edge of the turntable.What is the new angular speed of the turntable?arrow_forwardA rigid body with a cylindrical cross-section is released from the top of a 30 incline. It rolls 10.0 m to the bottom in 2.60 s. Find the moment of inertia of the body In terms of its mass m and radius r.arrow_forward
- A wheel 2.00 m in diameter lies in a vertical plane and rotates about its central axis with a constant angular acceleration of 4.00 rad/s2. The wheel starts at rest at t = 0, and the radius vector of a certain point P on the rim makes an angle of 57.3 with the horizontal at this time. At t = 2.00 s, find (a) the angular speed of the wheel and, for point P, (b) the tangential speed, (c) the total acceleration, and (d) the angular position.arrow_forwardA tennis ball is a hollow sphere with a thin wall. It is set rolling without slipping at 4.03 m/s on a horizontal section of a track as shown in Figure P10.62. It rolls around the inside of a vertical circular loop of radius r = 45.0 cm. As the ball nears the bottom of the loop, the shape of the track deviates from a perfect circle so that the ball leaves the track at a point h = 20.0 cm below the horizontal section. (a) Find the balls speed at the top of the loop. (b) Demonstrate that the ball will not fall from the track at the top of the loop. (c) Find the balls speed as it leaves the track at the bottom. What If? (d) Suppose that static friction between ball and track were negligible so that the ball slid instead of rolling. Would its speed then be higher, lower, or the same at the top of the loop? (e) Explain your answer to part (d). Figure P10.62arrow_forwardA playground merry-go-round of radius R = 2.00 m has a moment of inertia I = 250 kg m2 and is rotating at 10.0 rev/min about a frictionless, vertical axle. Facing the axle, a 25.0-kg child hops onto the merry-go-round and manages to sit down on the edge. What is the new angular speed of the merry-go-round?arrow_forward
- A 12.0-kg solid sphere of radius 1.50 m is being rotated by applying a constant tangential force of 10.0 N at a perpendicular distance of 1.50 m from the rotation axis through the center of the sphere. If the sphere is initially at rest, how many revolutions must the sphere go through while this force is applied before it reaches an angular speed of 30.0 rad/s?arrow_forwardA wheel is rotating about a fixed axis with constant angular acceleration 3 rad/s2. At different moments, its angular speed is 2 rad/s, 0. and +2 rad/s. For a point on the rim of the wheel, consider at these moments the magnitude of the tangential component of acceleration and the magnitude of the radial component of acceleration. Rank the following five items from largest to smallest: (a) |at| when = 2 rad/s, (b)|ar| when = 2 rad/s, (c)|ar| when = 0, (d) |at| when = 2 rad/s, and (e) |ar| when = 2 rad/s. If two items are equal, show them as equal in your ranking. If a quantity is equal to zero, show that fact in your ranking.arrow_forwardA constant torque is applied to a rigid body whose moment of inertia is 4.0kgm2 around the axis of rotation. If the wheel starts from rest and attains an angular velocity of 20.0 rad/s in 10.0 s, what is the applied torque?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Rotational Kinetic Energy; Author: AK LECTURES;https://www.youtube.com/watch?v=s5P3DGdyimI;License: Standard YouTube License, CC-BY