(a)
Interpretation:
The electronic configuration of magnesium has to be given and the valence electrons have to be marked.
(b)
Interpretation:
The electronic configuration of phosphorus has to be given and the valence electrons have to be marked.
(c)
Interpretation:
The electronic configuration of potassium has to be given and the valence electrons have to be marked.
(d)
Interpretation:
The electronic configuration of Fluorine has to be given and the valence electrons have to be marked.
(e)
Interpretation:
The electronic configuration of Selenium has to be given and the valence electrons have to be marked.
(f)
Interpretation:
The electronic configuration of Nitrogen has to be given and the valence electrons have to be marked.
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
EBK FOUNDATIONS OF COLLEGE CHEMISTRY
- A sample of a smoke stack emission was collected into a 1.25-L tank at 752 mm Hg and analyzed. The analysis showed 92% CO2, 3.6% NO, 1.2% SO2, and 4.1% H2O by mass. What is the partial pressure exerted by each gas?arrow_forwardGiven that a sample of air is made up of nitrogen, oxygen, and argon in the mole fractions 0.78 N2, 0.21 O2, and 0.010 Ar, what is the density of air at standard temperature and pressure?arrow_forwardOne of the chemical controversies of the nineteenth century concerned the element beryllium (Be). Berzelius originally claimed that beryllium was a trivalent element (forming Be3+ ions) and that it gave an oxide with the formula Be2O3. This resulted in a calculated atomic mass of 13.5 for beryllium. In formulating his periodic table, Mendeleev proposed that beryllium was divalent (forming Be2+ ions) and that it gave an oxide with the formula Be2O3. This assumption gives an atomic mass of 9.0. In 1894, A. Combes (Comptes Rendus 1894, p. 1221) reacted beryllium with the anion C5H7O2and measured the density of the gaseous product. Combess data for two different experiments are as follows: I II Mass 0.2022 g 0.2224 g Volume 22.6 cm3 26.0 cm3 Temperature 13C 17C Pressure 765.2 mm Hg 764.6 mm If beryllium is a divalent metal, the molecular formula of the product will be Be(C5H7O2)2; if it is trivalent, the formula will be Be(C5H7O2)3. Show how Combess data help to confirm that beryllium is a divalent metal.arrow_forward
- Why is nitrogen a good choice for the study of ideal gas behavior around room temperature?arrow_forwardHow does hydraulic fracturing differ from previously used techniques for the recovery of natural gas from the earth?arrow_forwardThe energy of the van der Waals bond, which is responsible for a number of the characteristics of water, is about 0.50 eV. (a) At what temperature would the average translational kinetic energy of water molecules be equal to this energy? (b) At that temperature, would water be liquid or gas? Under ordinary everyday conditions, do van der Waals forces play a role in the behavior of water?arrow_forward
- Chlorofluorocarbons such as CCl3F and CCl2F2 have been linked to ozone depletion in Antarctica. In 1994, these gases were found in quantities of 261 and 509 parts per trillion by volume (World Resources Institute, World resources 1996–97). Compute the molar concentration of these gases under conditions typical of (a) the mid-latitude troposphere (10 °C and 1.0 atm) and (b) the Antarctic stratosphere (200 K and 0.050 atm). Hint: The composition of a mixture of gases can be described by imagining that the gases are separated from one another in such a way that each exerts the same pressure. If one gas is present at very low levels it is common to express its concentration as, for example, ‘x parts per trillion by volume’. Then the volume of the separated gas at a certain pressure is x × 10−12 of the original volume of the gas mixture at the same pressure. For a mixture of perfect gases, the volume of each separated gas is proportional to its partial pressure in the mixture and hence to…arrow_forwardIn 1897 the Swedish explorer Andree tried to reach the North Pole in a balloon. The balloon was filled with hydrogen gas. The hydrogen gas was prepared from iron splints and diluted sulfuric acid. The reaction is Fe(a) + H,S0, (ag) + PeSO(og) + H;(s) The volume of the balloon was 4800 m and the loss of hydrogen gas during filling was estimated at 20% What mass of iron splints and 98 (by mas) H,S0, were nooded to enre the complete filling of the balloon? Assume a temperature of oC, a presaure of 10 atm during filling nd 100 yield. Mass of Fe Mass of HaS0, -arrow_forwardOn our campus, there are approximately 30.000 students who use 2.5 x 10° kJ of energy per day. Suppose all of that energy comes from the combustion of a carbon- hydrogen-oxygen compound in the presence of excess O2(g). 2.647 g sample of this gaseous carbon-hydrogen-oxygen compound that occupies a volume of 580 mL at 918,6 Torr and 24.00 °C. The products of the combustion of the given amount are 5.059 g CO2(g), 3.106 g H2O(1), and enough heat to raise the temperature of the calorimeter assembly from 24.00 to 38.33 °C. What is the molecular formula of this unknown compound and how many kilograms of this compound are needed to provide enough daily energy to all students on campus? (The heat capacity of the calorimeter is 4.915 kJ/°C.)arrow_forward
- A flask contains a mixture of neon (Ne), krypton (Kr), and radon (Rn) gases. Compare (a) the average kinetic energies of the three types of atoms and (b) the root-mean-square speeds. (Hint: Appendix D shows the molar mass (in g>mol) of each element under the chemical symbol for that element.)arrow_forwardTable 10.3 shows that the van der Waals b parameter hasunits of L/mol. This implies that we can calculate the size ofatoms or molecules from b. Using the value of b for Xe, calculatethe radius of a Xe atom and compare it to the valuefound in Figure 7.7, that is, 1.40 Å. Recall that the volume ofa sphere is (4/3)πr3arrow_forwardA student, following the procedure described to evaluate the Gas Law Constant, collected the following data in an exercise: mass Mg, g 0.0243 final gas volume, mL 25.0 barometric pressure, torr 754 vapor pressure of H2O at 25 °C 23.76 temperature, K 298 a) The gas collected in the eudiometer is a mixture of hydrogen and water vapor. Calculate the gas law constant. b) What would be the volume of hydrogen gas produced by the reaction of 0.243 g of magnesium metal and collected at 750 torr (corrected pressure) and 298 K? Use the value of R found in question A. 2. The results of this experiment are greatly affected by the care with which each of the steps is completed. a) Describe the error that would occur if the magnesium were to slide into the HCl(aq) in the beaker before the eudiometer is sealed off. b) What would be the effect on the results of a rise in the room temperature from 21.5℃, when determination #1 was done, to 25.8℃, when determination #2 was…arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning