College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 3P
The two ropes shown in the bird's-eye view of Figure P10.3 are used to drag a crate exactly 3 m across the floor. How much work is done by each of the ropes on the crate?
Figure P10.3
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule04:54
Chapter 10 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 10 - The brake shoes of your car are made of a material...Ch. 10 - When you pound a nail with a hammer, the nail gets...Ch. 10 - For Questions 3 through 1 0, give a specific...Ch. 10 - For Questions 3 through 1 0, give a specific...Ch. 10 - For Questions 3 through 10, give a specific...Ch. 10 - For Questions 3 through 10, give a specific...Ch. 10 - For Questions 3 through 1 0, give a specific...Ch. 10 - For Questions 3 through 1 0, give a specific...Ch. 10 - For Questions 3 through 1 0, give a specific...Ch. 10 - For Questions 3 through 1 0, give a specific...
Ch. 10 - A ball of putty is dropped from a height of 2 m...Ch. 10 - A 0.5 kg mass on a 1-m-long string swings in a...Ch. 10 - Particle A has less mass than particle B. Both are...Ch. 10 - Puck B has twice the mass of puck A. Starting from...Ch. 10 - To change a tire, you need to use a jack to raise...Ch. 10 - Prob. 16CQCh. 10 - A roller coaster car rolls down a frictionless...Ch. 10 - A spring gun shoots out a plastic ball at speed v....Ch. 10 - Sandy and Chris stand on the edge of a cliff and...Ch. 10 - A solid cylinder and a hollow cylinder have the...Ch. 10 - You are much more likely to be injured if you fall...Ch. 10 - A roller coaster starts from rest at its highest...Ch. 10 - You and a friend each carry a 15 kg suitcase up...Ch. 10 - A woman uses a pulley and a rope to raise a 20 kg...Ch. 10 - A hockey puck sliding along frictionless ice with...Ch. 10 - A block slides down a smooth ramp, starting from...Ch. 10 - A wrecking ball is suspended from a 5.0-m-long...Ch. 10 - Prob. 1PCh. 10 - The two ropes seen in Figure P10.2 are used to...Ch. 10 - The two ropes shown in the bird's-eye view of...Ch. 10 - Prob. 4PCh. 10 - A boy flies a kite with the string at a 30 angle...Ch. 10 - A crate slides down a ramp that makes a 20 angle...Ch. 10 - Which has the larger kinetic energy, a 10 g bullet...Ch. 10 - At what speed does a 1000 kg compact car have the...Ch. 10 - Prob. 9PCh. 10 - The cheetah is the fastest land animal, reaching...Ch. 10 - How fast would an 80 kg man need to run in order...Ch. 10 - Sams job at the amusement park is to slow down and...Ch. 10 - A 20 g plastic ball is moving to the left at 30...Ch. 10 - Prob. 14PCh. 10 - An energy storage system based on a flywheel (a...Ch. 10 - The lowest point in death Valley is 85.0 m below...Ch. 10 - Prob. 17PCh. 10 - The world's fastest humans can reach speeds of...Ch. 10 - A 72 kg bike racer climbs a 1200-m-long section of...Ch. 10 - A 1000 kg wrecking ball hangs from a 15-m-long...Ch. 10 - How far must you stretch a spring with k = 1000...Ch. 10 - How much energy can be stored in a spring with a...Ch. 10 - The elastic energy stored in your tendons can...Ch. 10 - Marissa drags a 23 kg duffel bag 14 m across the...Ch. 10 - Mark pushes his broken car 150 m down the block to...Ch. 10 - A 900 N crate slides 12m down a ramp that makes an...Ch. 10 - A 25 kg child slides down a playground slide at a...Ch. 10 - A boy reaches out of a window and tosses a ball...Ch. 10 - Prob. 29PCh. 10 - What minimum speed does a 100 g puck need to make...Ch. 10 - A car is parked at the top of a 50-m-high hill....Ch. 10 - A 1500 kg car is approaching the hill shown in...Ch. 10 - A 10 kg runaway grocery cart runs into a spring,...Ch. 10 - As a 15,000 kg jet lands on an aircraft carrier,...Ch. 10 - Your friend's Frisbee has become stuck 16m above...Ch. 10 - A fireman of mass 80 kg slides down a pole. When...Ch. 10 - Prob. 37PCh. 10 - Prob. 38PCh. 10 - In the winter activity of tubing, riders slide...Ch. 10 - A cyclist is coasting at 12 m/s when she starts...Ch. 10 - A 50 g marble moving at 2.0 m/s strikes a 20 g...Ch. 10 - Ball 1, with a mass of 100 g and traveling at 10...Ch. 10 - Prob. 43PCh. 10 - Two balls undergo a perfectly elastic head-on...Ch. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - A 1000 kg sports car accelerates from 0 to 30m/sin...Ch. 10 - In just 0.30 s, you compress a spring (spring...Ch. 10 - An elite Tour de France cyclist can maintain an...Ch. 10 - A 710 kg car drives at a constant speed of 23 m/s....Ch. 10 - An elevator weighing 2500 N ascends at a constant...Ch. 10 - How much work does Scott do to push a 80 kg sofa...Ch. 10 - A 550 kg elevator accelerates upward at 1.2 m/s2...Ch. 10 - Prob. 54GPCh. 10 - Prob. 55GPCh. 10 - Prob. 56GPCh. 10 - You are driving your 1500 kg car at 20 m/s down a...Ch. 10 - A 20 kg child is on a swing that hangs from...Ch. 10 - Prob. 59GPCh. 10 - A cannon tilted up at a 30 angle fires a cannon...Ch. 10 - The sledder shown in Figure P10.61 starts from the...Ch. 10 - A 50 g ice cube can slide without friction up and...Ch. 10 - The maximum energy a bone can absorb without...Ch. 10 - In an amusement park water slide, people slide...Ch. 10 - Boxes A and B in Figure P10.69 have masses of 12.0...Ch. 10 - What would be the speed of the boxes in Problem 69...Ch. 10 - A 20 g ball is fired horizontally with initial...Ch. 10 - Two coupled boxcars are rolling along at 2.5 m/s...Ch. 10 - A fish scale, consisting of a spring with spring...Ch. 10 - A 70 kg human sprinter can accelerate from rest to...Ch. 10 - A 50 g ball of clay traveling at 6.5 m/s hits and...Ch. 10 - Prob. 78GPCh. 10 - The mass of an elevator and its occupants is 1200...Ch. 10 - Prob. 80GPCh. 10 - Tennis Ball Testing A tennis ball bouncing on a...Ch. 10 - Tennis Ball Testing A tennis ball bouncing on a...Ch. 10 - Tennis Ball Testing A tennis ball bouncing on a...Ch. 10 - Prob. 84MSPPCh. 10 - Tennis Ball Testing A tennis ball bouncing on a...Ch. 10 - Work and Power in Cycling When you ride a bicycle...Ch. 10 - Work and Power in Cycling When you ride a bicycle...Ch. 10 - Work and Power in Cycling When you ride a bicycle...Ch. 10 - Work and Power in Cycling When you ride a bicycle...Ch. 10 - Work and Power in Cycling When you ride a bicycle...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The electric flux through a cubical box 8.0 cm on aside is 1.2103 N m2/C. What is the total charge enclosed by...
University Physics Volume 2
A circular bird feeder 19 cm in radius has rotational inertia 0.12 kg m2. Its suspended by a thin wire and is ...
Essential University Physics: Volume 1 (3rd Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
The Cosmic Perspective Fundamentals (2nd Edition)
4.(I) What is the mass of the diver in Fig. 9-49 if she exerts a torque of 1800m. N on the board, relative the ...
Physics: Principles with Applications
Due to the light absorbed by Earth’s surface that was emitted by Earth’s atmosphere, is Earth’s temperature nea...
Lecture- Tutorials for Introductory Astronomy
If acceleration is proportional to the net force or is equal to net force.
Conceptual Physics (12th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A nonconstant force is exerted on a particle as it moves in the positive direction along the x axis. Figure P9.26 shows a graph of this force Fx versus the particles position x. Find the work done by this force on the particle as the particle moves as follows. a. From xi = 0 to xf = 10.0 m b. From xi = 10.0 to xf = 20.0 m c. From xi = 0 to xf = 20.0 m FIGURE P9.26 Problems 26 and 27.arrow_forwardExplorers in the jungle find an ancient monument in the shape of a large isosceles triangle as shown in Figure P9.25. The monument is made from tens of thousands of small stone blocks of density 3 800 kg/m3. The monument is 15.7 m high and 64.8 m wide at its base and is everywhere 3.60 m thick from front to back. Before the monument was built many years ago, all the stone blocks lay on the ground. How much work did laborers do on the blocks to put them in position while building the entire monument? Note: The gravitational potential energy of an objectEarth system is given by Ug = MgyCM, where M is the total mass of the object and yCM is the elevation of its center of mass above the chosen reference level.arrow_forwardA particle is subject to a force Fx that varies with position as shown in Figure P7.9. Find the work done by the force on the particle as it moves (a) from x = 0 to x = 5.00 m, (b) from x = 5.00 m to x = 10.0 m, and (c) from x = 10.0 m to x = 15.0 m. (d) What is the total work done by the force over the distance x = 0 to x = 15.0 m?arrow_forward
- A sled of mass 70 kg starts from rest and slides down a 10 incline 80 m long. It then travels for 20 m horizontally before starting back up an 8° incline. It travels 80 m along this incline before coming to rest. What is the magnitude of the net work done on the sled by friction?arrow_forwardA particle moves in one dimension under the action of a conservative force. The potential energy of the system is given by the graph in Figure P8.55. Suppose the particle is given a total energy E, which is shown as a horizontal line on the graph. a. Sketch bar charts of the kinetic and potential energies at points x = 0, x = x1, and x = x2. b. At which location is the particle moving the fastest? c. What can be said about the speed of the particle at x = x3? FIGURE P8.55arrow_forward. In the annual Empire State Building race, contestants run up 1,575 steps to a height of 1,050 ft. In 2003, Australian Paul Crake completed the race in a record time of 9 min and 33 S, Mr., Crake weighed 143 lb (65 kg) , (a) How much work did Mr., Crake do in reaching the top of the building? (b) What was his average power output (in ft-lb/s and in hp)?arrow_forward
- A particle moves in the xy plane (Fig. P9.30) from the origin to a point having coordinates x = 7.00 m and y = 4.00 m under the influence of a force given by F=3y2+x. a. What is the work done on the particle by the force F if it moves along path 1 (shown in red)? b. What is the work done on the particle by the force F if it moves along path 2 (shown in blue)? c. What is the work done on the particle by the force F if it moves along path 3 (shown in green)? d. Is the force F conservative or nonconservative? Explain. FIGURE P9.30 In each case, the work is found using the integral of Fdr along the path (Equation 9.21). W=rtrfFdr=rtrf(Fxdx+Fydy+Fzdz) (a) The work done along path 1, we first need to integrate along dr=dxi from (0,0) to (7,0) and then along dr=dyj from (7,0) to (7,4): W1=x=0;y=0x=7;y=0(3y2i+xj)(dxi)+x=7;y=0x=7;y=4(3y2i+xj)(dyj) Performing the dot products, we get W1=x=0;y=0x=7;y=03y2dx+x=7;y=0x=7;y=4xdy Along the first part of this path, y = 0 therefore the first integral equals zero. For the second integral, x is constant and can be pulled out of the integral, and we can evaluate dy. W1=0+x=7;y=0x=7;y=4xdy=xy|x=7;y=0x=7;y=4=28J (b) The work done along path 2 is along dr=dyj from (0,0) to (0,4) and then along dr=dxi from (0,4) to (7,4): W2=x=0;y=0x=0;y=4(3y2i+xj)(dyj)+x=0;y=4x=7;y=4(3y2i+xj)(dyi) Performing the dot product, we get: W2=x=0;y=0x=0;y=4xdy+x=0;y=4x=7;y=43y2dx Along the first part of this path, x = 0. Therefore, the first integral equals zero. For the second integral, y is constant and can be pulled out of the integral, and we can evaluate dx. W2=0+3y2x|x=0;y=4x=7;y=4=336J (c) To find the work along the third path, we first write the expression for the work integral. W=rtrfFdr=rtrf(Fxdx+Fydy+Fzdz)W=rtrf(3y2dx+xdy)(1) At first glance, this appears quite simple, but we cant integrate xdy=xy like we might have above because the value of x changes as we vary y (i.e., x is a function of y.) [In parts (a) and (b), on a straight horizontal or vertical line, only x or y changes]. One approach is to parameterize both x and y as a function of another variable, say t, and write each integral in terms of only x or y. Constraining dr to be along the desired line, we can relate dx and dy: tan=dydxdy=tandxanddx=dytan(2) Now, use equation (2) in (1) to express each integral in terms of only one variable. W=x=0;y=0x=7;y=43y2dx+x=0;y=0x=7;y=4xdyW=y=0y=43y2dytan+x=0x=7xtandx We can determine the tangent of the angle, which is constant (the angle is the angle of the line with respect to the horizontal). tan=4.007.00=0.570 Insert the value of the tangent and solve the integrals. W=30.570y33|y=0y=4+0.570x22|x=0x=7W=112+14=126J (d) Since the work done is not path-independent, this is non-conservative force. Figure P9.30ANSarrow_forwardSuppose the ski patrol lowers a rescue sled and victim, having a total mass of 90.0 kg, down a 60.0° slope at constant speed, as shown in Figure 7.37. The coefficient of friction between the sled and the snow is 0.100. (a) How much work is done by friction as the sled moves 30.0 m along the hill? (b) How much work is done by the rope on the sled in this distance? (c) What is the work done by the gravitational force on the sled? (d) What is the total work done?arrow_forwardA jack-in-the-box is actually a system that consists of an object attached to the top of a vertical spring (Fig. P8.50). a. Sketch the energy graph for the potential energy and the total energy of the springobject system as a function of compression distance x from x = xmax to x = 0, where xmax is the maximum amount of compression of the spring. Ignore the change in gravitational potential energy. b. Sketch the kinetic energy of the system between these points the two distances in part (a)on the same graph (using a different color). FIGURE P8.50 Problems 50 and 79arrow_forward
- Physics Review A team of huskies performs 7 440 J of work on a loaded sled of mass 124 kg, drawing it from rest up a 4.60-m high snow-covered rise while the sled loses 1 520 J due to friction, (a) What is the net work done on the sled by the huskies and friction? (b) What is the change in the sleds potential energy? (c) What is the speed of the sled at the top of the rise? (See Section 5.5.)arrow_forwardGive an example of a situation in which there is a force and a displacement, but the force does no work. Explain why it does no work.arrow_forwardA boy starts at rest and slides down a frictionless slide as in Figure P5.64. The bottom of the track is a height h above the ground. The boy then leaves the track horizontally, striking the ground a distance d as shown. Using energy methods, determine the initial height H of the boy in terms of h and d. Figure P5.64arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY