Concept explainers
The brake shoes of your car are made of a material that can tolerate very high temperatures without being damaged. Why is this so?
To explain: The reason for usage of high temperature tolerance material for the brake shoes of the car.
Answer to Problem 1CQ
Explanation of Solution
Given data:
The material used to make the brake shoes of the car is the material that tolerates very high temperatures without any damage.
Explanation:
The brakes of the car slowdown the car by converting the kinetic energy of the car to thermal energy in the brake shoes through the friction.
The cars have large amount of kinetic energy. When the brakes are applied, the large amount of kinetic energy is converted in to thermal energy in the brake shoes through the friction.
As the huge amount of thermal energy is formed at the brake shoes, the temperature on the brake shoes increases to a very large value. Therefore, in order to prevent the damage due to very high temperatures, the brake shoes are made with the materials that are able to tolerate very high temperatures.
Conclusion:
Thus, the reason for usage of high temperature tolerance material for the brake shoes of the car is explained.
Want to see more full solutions like this?
Chapter 10 Solutions
College Physics: A Strategic Approach (3rd Edition)
Additional Science Textbook Solutions
Human Physiology: An Integrated Approach (8th Edition)
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Organic Chemistry (8th Edition)
Applications and Investigations in Earth Science (9th Edition)
Concepts of Genetics (12th Edition)
Microbiology: An Introduction
- A high jumper, falling at 4.0 m/s, lands on a foam pit and comes to rest, compressing the pit 0.40 m. If thepit is able to exert an average force of 1200 N on the high jumper in breaking the fall, what is the jumper'smass? (60 kg)arrow_forwardA 75.0 kg pole-vaulter running at 12.0 m/s vaults over the bar. His speed when he is above the bar is 5.0 m/s. Neglect air resistance, as well as any energy absorbed by the pole, and determine his height above ground as he crosses the bar.arrow_forwardof a copper wire of uniform cross section and Ex. 70: find the energy stored per unit volume of length 1.5 m, when it is stretched to a length of a copper wire of uniform cross section and of length 1.5 m, when it is stretched to length a of 1.51 m by a stress of 3 x 102 N/m2.arrow_forward
- A 50kg man travels to the moon. When he climbs 5m up a ladder into his lunar base, he gains 400J of GPE. What is the gravity on the moon?arrow_forwardIn the figure, a 2.51 g ice flake is released from the edge of a hemispherical bowl whose radius r is 11.3 cm. The flake-bowl contact is frictionless. (a) How much work is done on the flake by the gravitational force during the flake's descent to the bottom of the bowl? (b) What is the change in the potential energy of the flake-Earth system during that descent? (c) If that potential energy is taken to be zero at the bottom of the bowl, what is its value when the flake is released? (d) If, instead, the potential energy is taken to be zero at the release point, what is its value when the flake reaches the bottom of the bowl? Ice flakearrow_forwardReview. The mass of a car is 1 500 kg. The shape of the cars body is such that its aerodynamic drag coefficient is D = 0.330 and its frontal area is 2.50 m2. Assuming the drag force is proportional to 2 and ignoring other sources of friction, calculate the power required to maintain a speed of 100 km/h as the car climbs a long hill sloping at 3.20.arrow_forward
- To give a pet hamster exercise, some people put the hamster in a ventilated ball andallow it roam around the house(Fig. P13.66). When a hamsteris in such a ball, it can cross atypical room in a few minutes.Estimate the total kinetic energyin the ball-hamster system. FIGURE P13.66 Problems 66 and 67arrow_forwardA ball of clay falls freely to the hard floor. It does not bounce noticeably, and it very quickly comes to rest. What, then, has happened to the energy the ball had while it was falling? (a) It has been used up in producing the downward motion. (b) It has been transformed back into potential energy. (c) It has been transferred into the ball by heat. (d) It is in the ball and floor (and walls) as energy of invisible molecular motion. (e) Most of it went into sound.arrow_forwardReview. While Lost-a-Lot ponders his next move in the situation described in Problem 11 and illustrated in Figure P12.11, the enemy attacks! An incoming projectile breaks off the stone ledge so that the end of the drawbridge can be lowered past the wall where it usually rests. In addition, a fragment of the projectile bounces up and cuts the drawbridge cable! The hinge between the castle wall and the bridge is frictionless, and the bridge swings down freely until it is vertical and smacks into the vertical castle wall below the castle entrance. (a) How long does Lost-a-Lot stay in contact with the bridge while it swings downward? (b) Find the angular acceleration of the bridge just as it starts to move. (c) Find the angular speed of the bridge when it strikes the wall below the hinge. Find the force exerted by the hinge on the bridge (d) immediately after the cable breaks and (e) immediately before it strikes the castle wall.arrow_forward
- Scissors are like a double-lever "Stem, Which of the Simple machines in Figure 9.23 and Figure 9.24 is most analogous to scissors? Figure 9.23 A nail puller is a lever with a large mechanical advantage. The external forces on the nail puller are represented by solid arrows. The force that the nail puller applies to the nail ( Fo ) is not a force on the nail puller. The reaction force the nail exerts back on the puller ( Fn ) is an external force and is equal and opposite to Fo. The perpendicular lever arms of the input and output forces are li and l0 Figure 9.24 (a) In the case of the wheelbarrow, the output force or load is between the pivot and the input force. The pivot IS the wheel's axle. Here, the output force is greater than the input force. Thus, a wheelbarrow enables you to lift much heavier loads than you could with your body alone. (b) In the case of the shovel, the input force is between the pivot and the load, but the input lever arm is shorter than the output lever arm. The pivot is at the handle held by the right hand. Here, the output force (supporting the shovel's load) is less than the input force (from the hand nearest the load), because the Input is exerted closer to the pivot than is the outputarrow_forwardThe Flybar high-tech pogo stick is advertised as being capable of launching jumpers up to 6 ft. The ad says that the minimum weight of a jumper is 120 lb and the maximum weight is 250 lb. It also says that the pogo stick uses a patented system of elastometric rubber springs that provides up to 1200 lbs of thrust, something common helical spring sticks simply cannot achieve (rubber has 10 times the energy storing capability of steel). a. Use Figure P8.32 to estimate the maximum compression of the pogo sticks spring. Include the uncertainty in your estimate. b. What is the effective spring constant of the elastometric rubber springs? Comment on the claim that rubber has 10 times the energy-storing capability of steel. c. Check the ads claim that the maximum height a jumper can achieve is 6 ft.arrow_forwardJonathan is riding a bicycle and encounters a hill of height 7.30 m. At the base of the hill, he is traveling at 6.00 m/s. When he reaches the top of the hill, he is traveling at 1.00 m/s. Jonathan and his bicycle together have a mass of 85.0 kg. Ignore friction in the bicycle mechanism and between the bicycle tires and the road. (a) What is the total external work done on the system of Jonathan and the bicycle between the time he starts up the hill and the time he reaches the top? (b) What is the change in potential energy stored in Jonathans body during this process? (c) How much work does Jonathan do on the bicycle pedals within the JonathanbicycleEarth system during this process?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning