College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 17P
(a)
To determine
To find: The kinetic energy of a car.
(b)
To determine
To find: The height required to drop the car in order to attain the same kinetic energy just before the impact.
(c)
To determine
To check: Whether the answer in Part (b) depends on the mass of the car or not.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 10 - The brake shoes of your car are made of a material...Ch. 10 - When you pound a nail with a hammer, the nail gets...Ch. 10 - For Questions 3 through 1 0, give a specific...Ch. 10 - For Questions 3 through 1 0, give a specific...Ch. 10 - For Questions 3 through 10, give a specific...Ch. 10 - For Questions 3 through 10, give a specific...Ch. 10 - For Questions 3 through 1 0, give a specific...Ch. 10 - For Questions 3 through 1 0, give a specific...Ch. 10 - For Questions 3 through 1 0, give a specific...Ch. 10 - For Questions 3 through 1 0, give a specific...
Ch. 10 - A ball of putty is dropped from a height of 2 m...Ch. 10 - A 0.5 kg mass on a 1-m-long string swings in a...Ch. 10 - Particle A has less mass than particle B. Both are...Ch. 10 - Puck B has twice the mass of puck A. Starting from...Ch. 10 - To change a tire, you need to use a jack to raise...Ch. 10 - Prob. 16CQCh. 10 - A roller coaster car rolls down a frictionless...Ch. 10 - A spring gun shoots out a plastic ball at speed v....Ch. 10 - Sandy and Chris stand on the edge of a cliff and...Ch. 10 - A solid cylinder and a hollow cylinder have the...Ch. 10 - You are much more likely to be injured if you fall...Ch. 10 - A roller coaster starts from rest at its highest...Ch. 10 - You and a friend each carry a 15 kg suitcase up...Ch. 10 - A woman uses a pulley and a rope to raise a 20 kg...Ch. 10 - A hockey puck sliding along frictionless ice with...Ch. 10 - A block slides down a smooth ramp, starting from...Ch. 10 - A wrecking ball is suspended from a 5.0-m-long...Ch. 10 - Prob. 1PCh. 10 - The two ropes seen in Figure P10.2 are used to...Ch. 10 - The two ropes shown in the bird's-eye view of...Ch. 10 - Prob. 4PCh. 10 - A boy flies a kite with the string at a 30 angle...Ch. 10 - A crate slides down a ramp that makes a 20 angle...Ch. 10 - Which has the larger kinetic energy, a 10 g bullet...Ch. 10 - At what speed does a 1000 kg compact car have the...Ch. 10 - Prob. 9PCh. 10 - The cheetah is the fastest land animal, reaching...Ch. 10 - How fast would an 80 kg man need to run in order...Ch. 10 - Sams job at the amusement park is to slow down and...Ch. 10 - A 20 g plastic ball is moving to the left at 30...Ch. 10 - Prob. 14PCh. 10 - An energy storage system based on a flywheel (a...Ch. 10 - The lowest point in death Valley is 85.0 m below...Ch. 10 - Prob. 17PCh. 10 - The world's fastest humans can reach speeds of...Ch. 10 - A 72 kg bike racer climbs a 1200-m-long section of...Ch. 10 - A 1000 kg wrecking ball hangs from a 15-m-long...Ch. 10 - How far must you stretch a spring with k = 1000...Ch. 10 - How much energy can be stored in a spring with a...Ch. 10 - The elastic energy stored in your tendons can...Ch. 10 - Marissa drags a 23 kg duffel bag 14 m across the...Ch. 10 - Mark pushes his broken car 150 m down the block to...Ch. 10 - A 900 N crate slides 12m down a ramp that makes an...Ch. 10 - A 25 kg child slides down a playground slide at a...Ch. 10 - A boy reaches out of a window and tosses a ball...Ch. 10 - Prob. 29PCh. 10 - What minimum speed does a 100 g puck need to make...Ch. 10 - A car is parked at the top of a 50-m-high hill....Ch. 10 - A 1500 kg car is approaching the hill shown in...Ch. 10 - A 10 kg runaway grocery cart runs into a spring,...Ch. 10 - As a 15,000 kg jet lands on an aircraft carrier,...Ch. 10 - Your friend's Frisbee has become stuck 16m above...Ch. 10 - A fireman of mass 80 kg slides down a pole. When...Ch. 10 - Prob. 37PCh. 10 - Prob. 38PCh. 10 - In the winter activity of tubing, riders slide...Ch. 10 - A cyclist is coasting at 12 m/s when she starts...Ch. 10 - A 50 g marble moving at 2.0 m/s strikes a 20 g...Ch. 10 - Ball 1, with a mass of 100 g and traveling at 10...Ch. 10 - Prob. 43PCh. 10 - Two balls undergo a perfectly elastic head-on...Ch. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - A 1000 kg sports car accelerates from 0 to 30m/sin...Ch. 10 - In just 0.30 s, you compress a spring (spring...Ch. 10 - An elite Tour de France cyclist can maintain an...Ch. 10 - A 710 kg car drives at a constant speed of 23 m/s....Ch. 10 - An elevator weighing 2500 N ascends at a constant...Ch. 10 - How much work does Scott do to push a 80 kg sofa...Ch. 10 - A 550 kg elevator accelerates upward at 1.2 m/s2...Ch. 10 - Prob. 54GPCh. 10 - Prob. 55GPCh. 10 - Prob. 56GPCh. 10 - You are driving your 1500 kg car at 20 m/s down a...Ch. 10 - A 20 kg child is on a swing that hangs from...Ch. 10 - Prob. 59GPCh. 10 - A cannon tilted up at a 30 angle fires a cannon...Ch. 10 - The sledder shown in Figure P10.61 starts from the...Ch. 10 - A 50 g ice cube can slide without friction up and...Ch. 10 - The maximum energy a bone can absorb without...Ch. 10 - In an amusement park water slide, people slide...Ch. 10 - Boxes A and B in Figure P10.69 have masses of 12.0...Ch. 10 - What would be the speed of the boxes in Problem 69...Ch. 10 - A 20 g ball is fired horizontally with initial...Ch. 10 - Two coupled boxcars are rolling along at 2.5 m/s...Ch. 10 - A fish scale, consisting of a spring with spring...Ch. 10 - A 70 kg human sprinter can accelerate from rest to...Ch. 10 - A 50 g ball of clay traveling at 6.5 m/s hits and...Ch. 10 - Prob. 78GPCh. 10 - The mass of an elevator and its occupants is 1200...Ch. 10 - Prob. 80GPCh. 10 - Tennis Ball Testing A tennis ball bouncing on a...Ch. 10 - Tennis Ball Testing A tennis ball bouncing on a...Ch. 10 - Tennis Ball Testing A tennis ball bouncing on a...Ch. 10 - Prob. 84MSPPCh. 10 - Tennis Ball Testing A tennis ball bouncing on a...Ch. 10 - Work and Power in Cycling When you ride a bicycle...Ch. 10 - Work and Power in Cycling When you ride a bicycle...Ch. 10 - Work and Power in Cycling When you ride a bicycle...Ch. 10 - Work and Power in Cycling When you ride a bicycle...Ch. 10 - Work and Power in Cycling When you ride a bicycle...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A cat’s crinkle ball toy of mass 15 g is thrown straight up with an initial speed of 3 m/s. Assume in this problem that air drag is negligible. (a) What is the kinetic energy of the ball as it leaves the hand? (b) How much work is done by the gravitational force during the ball’s rise to its peak? (c) What is the change in the gravitational potential energy of the ball during the rise to its peak? (d) If the gravitational potential energy is taken to be zero at the point where it leaves your hand, what is the gravitational potential energy when it reaches the maximum height? (e) What if the gravitational potential energy is taken to be zero at the maximum height the ball reaches, what would the gravitational potential energy be when it leaves the hand? (f) What is the maximum height the ball reaches?arrow_forwardPhysics Review A team of huskies performs 7 440 J of work on a loaded sled of mass 124 kg, drawing it from rest up a 4.60-m high snow-covered rise while the sled loses 1 520 J due to friction, (a) What is the net work done on the sled by the huskies and friction? (b) What is the change in the sleds potential energy? (c) What is the speed of the sled at the top of the rise? (See Section 5.5.)arrow_forwardIntegrated Concepts (a) What force must be supplied by an elevator cable to produce an acceleration of 0.800 m/s2 against a 200-N frictional force, if the mass of the loaded elevator is 1500 kg? (b) How much work is done by the cable in lifting the elevator 20.0 m? (c) What is the final speed of the elevator if it starts from rest? (d) How much work went into thermal energy?arrow_forward
- Someone drops a 50 — g pebble off of a docked cruise ship, 70.0 m from the water line. A person on a dock 3.0 m from the water line holds out a net to catch the pebble. (a) How much work is done on the pebble by gravity during the drop? (b) What is the change in the gravitational potential energy during the drop? If the gravitational potential energy is zero at the water line, what is the gravitational potential energy (c) when the pebble is dropped? (d) When it reaches the net? What if the gravitational potential energy was 30.0 Joules at water level? (e) Find the answers to the same questions in (c) and (d).arrow_forwardEstimate the kinetic energy of the following: a. An ant walking across the kitchen floor b. A baseball thrown by a professional pitcher c. A car on the highway d. A large truck on the highwayarrow_forwardSuppose that the air resistance a car encounters is independent of its speed. When the car travels at 15 m/s, its engine delivers 20 hp to its wheels. (a) What is the power delivered to the wheels when the car travels at 30 m/s? (b) How much energy does the car use in covering 10 km at 15 m/s? At 30 m/s? Assume that the engine is 25 efficient. (c) Answer the same questions if the force of air resistance is proportional to the speed of the automobile. (d) What do these results, plus your experience with gasoline consumption, tell you about air resistance?arrow_forward
- (a) How fast must a 3000-kg elephant move to have the same kinetic energy as a 65.0-kg sprinter running at 10.0 m/s? (b) Discuss how the larger energies needed for the movement of larger animals would relate to metabolic rates.arrow_forwardSuppose the ski patrol lowers a rescue sled and victim, having a total mass of 90.0 kg, down a 60.0° slope at constant speed, as shown in Figure 7.37. The coefficient of friction between the sled and the snow is 0.100. (a) How much work is done by friction as the sled moves 30.0 m along the hill? (b) How much work is done by the rope on the sled in this distance? (c) What is the work done by the gravitational force on the sled? (d) What is the total work done?arrow_forward(a) What is the efficiency of an out-of-condition professor who does 2.10105J of useful work while metabolizing 500 kcal of food energy? (b) How many food calories would a well-conditioned athlete metabolize in doing the same work with an efficiency of 20%?arrow_forward
- A 60.0-kg athlete leaps straight up into the air from a trampoline with an initial speed of 9.0 m/s. The goal of this problem is to find the maximum height she attains and her speed at half maximum height. (a) What are the interacting objects and how do they interact? (b) Select the height at which the athletes speed is 9.0 m/s as y = 0. What is her kinetic energy at this point? What is the gravitational potential energy associated with the athlete? (c) What is her kinetic energy at maximum height? What is the gravitational potential energy associated with the athlete? (d) Write a general equation for energy conservation in this case and solve for the maximum height. Substitute and obtain a numerical answer. (e) Write the general equation for energy conservation and solve for the velocity at half the maximum height. Substitute and obtain a numerical answer.arrow_forward(a) What is the power output in watts and horsepower of a 70.0-kg sprinter who accelerates from rest to 10.0 m/s in 3.00 s? (b) Considering the amount of power generated, do you think a well-trained athlete could do this repetitively for long periods of time?arrow_forwardA large cruise ship of mass 6.50 107 kg has a speed of 12.0 m/s at some instant. (a) What is the ships kinetic energy at this time? (b) How much work is required to stop it? (c) What is the magnitude of the constant force required to stop it as it undergoes a displacement of 2.50 km?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning