College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10, Problem 53GP
A 550 kg elevator accelerates upward at 1.2 m/s2 for the first 15 m of its motion. How much work is done during this part of its motion by the cable that lifts the elevator?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 10 - The brake shoes of your car are made of a material...Ch. 10 - When you pound a nail with a hammer, the nail gets...Ch. 10 - For Questions 3 through 1 0, give a specific...Ch. 10 - For Questions 3 through 1 0, give a specific...Ch. 10 - For Questions 3 through 10, give a specific...Ch. 10 - For Questions 3 through 10, give a specific...Ch. 10 - For Questions 3 through 1 0, give a specific...Ch. 10 - For Questions 3 through 1 0, give a specific...Ch. 10 - For Questions 3 through 1 0, give a specific...Ch. 10 - For Questions 3 through 1 0, give a specific...
Ch. 10 - A ball of putty is dropped from a height of 2 m...Ch. 10 - A 0.5 kg mass on a 1-m-long string swings in a...Ch. 10 - Particle A has less mass than particle B. Both are...Ch. 10 - Puck B has twice the mass of puck A. Starting from...Ch. 10 - To change a tire, you need to use a jack to raise...Ch. 10 - Prob. 16CQCh. 10 - A roller coaster car rolls down a frictionless...Ch. 10 - A spring gun shoots out a plastic ball at speed v....Ch. 10 - Sandy and Chris stand on the edge of a cliff and...Ch. 10 - A solid cylinder and a hollow cylinder have the...Ch. 10 - You are much more likely to be injured if you fall...Ch. 10 - A roller coaster starts from rest at its highest...Ch. 10 - You and a friend each carry a 15 kg suitcase up...Ch. 10 - A woman uses a pulley and a rope to raise a 20 kg...Ch. 10 - A hockey puck sliding along frictionless ice with...Ch. 10 - A block slides down a smooth ramp, starting from...Ch. 10 - A wrecking ball is suspended from a 5.0-m-long...Ch. 10 - Prob. 1PCh. 10 - The two ropes seen in Figure P10.2 are used to...Ch. 10 - The two ropes shown in the bird's-eye view of...Ch. 10 - Prob. 4PCh. 10 - A boy flies a kite with the string at a 30 angle...Ch. 10 - A crate slides down a ramp that makes a 20 angle...Ch. 10 - Which has the larger kinetic energy, a 10 g bullet...Ch. 10 - At what speed does a 1000 kg compact car have the...Ch. 10 - Prob. 9PCh. 10 - The cheetah is the fastest land animal, reaching...Ch. 10 - How fast would an 80 kg man need to run in order...Ch. 10 - Sams job at the amusement park is to slow down and...Ch. 10 - A 20 g plastic ball is moving to the left at 30...Ch. 10 - Prob. 14PCh. 10 - An energy storage system based on a flywheel (a...Ch. 10 - The lowest point in death Valley is 85.0 m below...Ch. 10 - Prob. 17PCh. 10 - The world's fastest humans can reach speeds of...Ch. 10 - A 72 kg bike racer climbs a 1200-m-long section of...Ch. 10 - A 1000 kg wrecking ball hangs from a 15-m-long...Ch. 10 - How far must you stretch a spring with k = 1000...Ch. 10 - How much energy can be stored in a spring with a...Ch. 10 - The elastic energy stored in your tendons can...Ch. 10 - Marissa drags a 23 kg duffel bag 14 m across the...Ch. 10 - Mark pushes his broken car 150 m down the block to...Ch. 10 - A 900 N crate slides 12m down a ramp that makes an...Ch. 10 - A 25 kg child slides down a playground slide at a...Ch. 10 - A boy reaches out of a window and tosses a ball...Ch. 10 - Prob. 29PCh. 10 - What minimum speed does a 100 g puck need to make...Ch. 10 - A car is parked at the top of a 50-m-high hill....Ch. 10 - A 1500 kg car is approaching the hill shown in...Ch. 10 - A 10 kg runaway grocery cart runs into a spring,...Ch. 10 - As a 15,000 kg jet lands on an aircraft carrier,...Ch. 10 - Your friend's Frisbee has become stuck 16m above...Ch. 10 - A fireman of mass 80 kg slides down a pole. When...Ch. 10 - Prob. 37PCh. 10 - Prob. 38PCh. 10 - In the winter activity of tubing, riders slide...Ch. 10 - A cyclist is coasting at 12 m/s when she starts...Ch. 10 - A 50 g marble moving at 2.0 m/s strikes a 20 g...Ch. 10 - Ball 1, with a mass of 100 g and traveling at 10...Ch. 10 - Prob. 43PCh. 10 - Two balls undergo a perfectly elastic head-on...Ch. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - A 1000 kg sports car accelerates from 0 to 30m/sin...Ch. 10 - In just 0.30 s, you compress a spring (spring...Ch. 10 - An elite Tour de France cyclist can maintain an...Ch. 10 - A 710 kg car drives at a constant speed of 23 m/s....Ch. 10 - An elevator weighing 2500 N ascends at a constant...Ch. 10 - How much work does Scott do to push a 80 kg sofa...Ch. 10 - A 550 kg elevator accelerates upward at 1.2 m/s2...Ch. 10 - Prob. 54GPCh. 10 - Prob. 55GPCh. 10 - Prob. 56GPCh. 10 - You are driving your 1500 kg car at 20 m/s down a...Ch. 10 - A 20 kg child is on a swing that hangs from...Ch. 10 - Prob. 59GPCh. 10 - A cannon tilted up at a 30 angle fires a cannon...Ch. 10 - The sledder shown in Figure P10.61 starts from the...Ch. 10 - A 50 g ice cube can slide without friction up and...Ch. 10 - The maximum energy a bone can absorb without...Ch. 10 - In an amusement park water slide, people slide...Ch. 10 - Boxes A and B in Figure P10.69 have masses of 12.0...Ch. 10 - What would be the speed of the boxes in Problem 69...Ch. 10 - A 20 g ball is fired horizontally with initial...Ch. 10 - Two coupled boxcars are rolling along at 2.5 m/s...Ch. 10 - A fish scale, consisting of a spring with spring...Ch. 10 - A 70 kg human sprinter can accelerate from rest to...Ch. 10 - A 50 g ball of clay traveling at 6.5 m/s hits and...Ch. 10 - Prob. 78GPCh. 10 - The mass of an elevator and its occupants is 1200...Ch. 10 - Prob. 80GPCh. 10 - Tennis Ball Testing A tennis ball bouncing on a...Ch. 10 - Tennis Ball Testing A tennis ball bouncing on a...Ch. 10 - Tennis Ball Testing A tennis ball bouncing on a...Ch. 10 - Prob. 84MSPPCh. 10 - Tennis Ball Testing A tennis ball bouncing on a...Ch. 10 - Work and Power in Cycling When you ride a bicycle...Ch. 10 - Work and Power in Cycling When you ride a bicycle...Ch. 10 - Work and Power in Cycling When you ride a bicycle...Ch. 10 - Work and Power in Cycling When you ride a bicycle...Ch. 10 - Work and Power in Cycling When you ride a bicycle...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The data were obtained from a use-dilution test comparing four disinfectants against Salmonella choleraesuis. G...
Microbiology: An Introduction
APPLY 1.2 Express the following quantities in scientific notation
using fundamental SI units of mass and lengt...
Chemistry (7th Edition)
Where is transitional epithelium found and what is its importance at those sites?
Anatomy & Physiology (6th Edition)
a. How can aspirin be synthesized from benzene? b. Ibuprofen is the active ingredient in pain relievers such as...
Organic Chemistry (8th Edition)
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
Two culture media were inoculated with four different bacteria. After incubation, the following results were ob...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A block of mass m = 2.50 kg is pushed a distance d = 2.20 m along a frictionless, horizontal table by a constant applied force of magnitude F = 16.0 N directed at an angle = 25.0 below the horizontal as shown in Figure P6.3. Determine the work done on the block by (a) the applied force, (b) the normal force exerted by the table, (c) the gravitational force, and (d) the net force on the block. Figure P6.3arrow_forwardAs a young man, Tarzan climbed up a vine to reach his tree house. As he got older, he decided to build and use a staircase instead. Since the work of the gravitational force mg is path Independent, what did the King of the Apes gain in using stairs?arrow_forwardA sled of mass 70 kg starts from rest and slides down a 10 incline 80 m long. It then travels for 20 m horizontally before starting back up an 8° incline. It travels 80 m along this incline before coming to rest. What is the magnitude of the net work done on the sled by friction?arrow_forward
- Suppose the ski patrol lowers a rescue sled and victim, having a total mass of 90.0 kg, down a 60.0° slope at constant speed, as shown in Figure 7.37. The coefficient of friction between the sled and the snow is 0.100. (a) How much work is done by friction as the sled moves 30.0 m along the hill? (b) How much work is done by the rope on the sled in this distance? (c) What is the work done by the gravitational force on the sled? (d) What is the total work done?arrow_forwardA boy starts at rest and slides down a frictionless slide as in Figure P5.64. The bottom of the track is a height h above the ground. The boy then leaves the track horizontally, striking the ground a distance d as shown. Using energy methods, determine the initial height H of the boy in terms of h and d. Figure P5.64arrow_forwardThe force acting on a particle is Fx = (8x 16), where F is in newtons anti x is in meters. (a) Make a plot of this force versus x from x = 0 to x = 3.00 m. (b) From your graph, find the net work done by this force on the particle as it moves from x = 0 to x = 3.00 m.arrow_forward
- Give an example of a situation in which there is a force and a displacement, but the force does no work. Explain why it does no work.arrow_forwardIf the net work done by external forces on a particle is zero, which of the following statements about the particle must be true? (a) Its velocity is zero. (b) Its velocity is decreased. (c) Its velocity is unchanged. (d) Its speed is unchanged. (e) More information is needed.arrow_forwardA particle moves in one dimension under the action of a conservative force. The potential energy of the system is given by the graph in Figure P8.55. Suppose the particle is given a total energy E, which is shown as a horizontal line on the graph. a. Sketch bar charts of the kinetic and potential energies at points x = 0, x = x1, and x = x2. b. At which location is the particle moving the fastest? c. What can be said about the speed of the particle at x = x3? FIGURE P8.55arrow_forward
- As shown in Figure P7.20, a green bead of mass 25 g slides along a straight wire. The length of the wire from point to point is 0.600 m, and point is 0.200 in higher than point . A constant friction force of magnitude 0.025 0 N acts on the bead. (a) If the bead is released from rest at point , what is its speed at point ? (b) A red bead of mass 25 g slides along a curved wire, subject to a friction force with the same constant magnitude as that on the green bead. If the green and red beads are released simultaneously from rest at point , which bead reaches point first? Explain. Figure P7.20arrow_forwardThe force acting on a panicle varies as shown in Figure la P7.14. Find the work done by the force on the particle as it moves (a) from x = 0 to x = 8.00 m. (b) from x = 8.00 m to x = 10.0 m, and (c) from x = 0 to x = 10.0 m.arrow_forwardA particle moves in the xy plane (Fig. P9.30) from the origin to a point having coordinates x = 7.00 m and y = 4.00 m under the influence of a force given by F=3y2+x. a. What is the work done on the particle by the force F if it moves along path 1 (shown in red)? b. What is the work done on the particle by the force F if it moves along path 2 (shown in blue)? c. What is the work done on the particle by the force F if it moves along path 3 (shown in green)? d. Is the force F conservative or nonconservative? Explain. FIGURE P9.30 In each case, the work is found using the integral of Fdr along the path (Equation 9.21). W=rtrfFdr=rtrf(Fxdx+Fydy+Fzdz) (a) The work done along path 1, we first need to integrate along dr=dxi from (0,0) to (7,0) and then along dr=dyj from (7,0) to (7,4): W1=x=0;y=0x=7;y=0(3y2i+xj)(dxi)+x=7;y=0x=7;y=4(3y2i+xj)(dyj) Performing the dot products, we get W1=x=0;y=0x=7;y=03y2dx+x=7;y=0x=7;y=4xdy Along the first part of this path, y = 0 therefore the first integral equals zero. For the second integral, x is constant and can be pulled out of the integral, and we can evaluate dy. W1=0+x=7;y=0x=7;y=4xdy=xy|x=7;y=0x=7;y=4=28J (b) The work done along path 2 is along dr=dyj from (0,0) to (0,4) and then along dr=dxi from (0,4) to (7,4): W2=x=0;y=0x=0;y=4(3y2i+xj)(dyj)+x=0;y=4x=7;y=4(3y2i+xj)(dyi) Performing the dot product, we get: W2=x=0;y=0x=0;y=4xdy+x=0;y=4x=7;y=43y2dx Along the first part of this path, x = 0. Therefore, the first integral equals zero. For the second integral, y is constant and can be pulled out of the integral, and we can evaluate dx. W2=0+3y2x|x=0;y=4x=7;y=4=336J (c) To find the work along the third path, we first write the expression for the work integral. W=rtrfFdr=rtrf(Fxdx+Fydy+Fzdz)W=rtrf(3y2dx+xdy)(1) At first glance, this appears quite simple, but we cant integrate xdy=xy like we might have above because the value of x changes as we vary y (i.e., x is a function of y.) [In parts (a) and (b), on a straight horizontal or vertical line, only x or y changes]. One approach is to parameterize both x and y as a function of another variable, say t, and write each integral in terms of only x or y. Constraining dr to be along the desired line, we can relate dx and dy: tan=dydxdy=tandxanddx=dytan(2) Now, use equation (2) in (1) to express each integral in terms of only one variable. W=x=0;y=0x=7;y=43y2dx+x=0;y=0x=7;y=4xdyW=y=0y=43y2dytan+x=0x=7xtandx We can determine the tangent of the angle, which is constant (the angle is the angle of the line with respect to the horizontal). tan=4.007.00=0.570 Insert the value of the tangent and solve the integrals. W=30.570y33|y=0y=4+0.570x22|x=0x=7W=112+14=126J (d) Since the work done is not path-independent, this is non-conservative force. Figure P9.30ANSarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Mechanical work done (GCSE Physics); Author: Dr de Bruin's Classroom;https://www.youtube.com/watch?v=OapgRhYDMvw;License: Standard YouTube License, CC-BY