Concept explainers
Interpretation:
The mole fraction of argonin a gaseous mixture is to be calculated.
Concept introduction:
The mole fraction of an individual gas, for a combination of gases, is the ratio of the moles of the individual gas with the total number of moles of the mixture:
Here,
Also, the mole fraction of an individual gas, for a combination of gases, can be calculated from the ratio of the partial pressure of the individual gas to the total pressure of the combination.
Here,
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
Chemistry
- 47 HCl(g) reacts with ammonia gas, NH3(g), to form solid ammonium chloride. If a sample of ammonia occupying 250 mL at 21 C and a pressure of 140 torr is allowed to react with excess HCl, what mass of NH4Cl will form?arrow_forwardLiquid oxygen was first prepared by heating potassium chlorate, KClO3, in a closed vessel to obtain oxygen at high pressure. The oxygen was cooled until it liquefied. 2KClO3(s)2KCl(s)+3O2(g) If 171 g of potassium chlorate reacts in a 2.70-L vessel, which was initially evacuated, what pressure of oxygen will be attained when the temperature is finally cooled to 25C? Use the preceding chemical equation and ignore the volume of solid product.arrow_forwardYou have an equimolar mixture of the gases SO2 and O2, along with some He, in a container fitted with a piston. The density of this mixture at STP is 1.924 g/L. Assume ideal behavior and constant temperature and pressure. a. What is the mole fraction of He in the original mixture? b. The SO2 and O2 react to completion to form SO3. What is the density of the gas mixture after the reaction is complete?arrow_forward
- perform stoichiometric ca1cu1uions for reactions involving gases as reactants or products.arrow_forward54 One way to generate oxygen is to heat potassium chlorate, KClO3. (The other product is potassium chloride.) If 386 mL of oxygen at 41 C and 97.8 kPa is generated by this reaction, what is the minimum mass of KClO3used?arrow_forward5-114 Carbon dioxide gas, saturated with water vapor, can be produced by the addition of aqueous acid to calcium carbonate based on the following balanced net ionic equation: (a) How many moles of wet CO (g), collected at 60.°C and 774 torr total pressure, are produced by the complete reaction of 10.0 g of CaCO3 with excess acid? (b) What volume does this wet CO2 occupy? (c) What volume would the CO2 occupy at 774 torr if a desiccant (a chemical drying agent) were added to remove the water? The vapor pressure of water at 60.°C is 149.4 mm Hg.arrow_forward
- Carbon dioxide, CO2, was shown lo effuse through a porous plate at the rate of 0.033 mol/min. The same quantity of an unknown gas, 0.033 moles, is found to effuse through the same porous barrier in 104 seconds. Calculate the molar mass of the unknown gas.arrow_forward5-107 If 60.0 g of NH3 occupies 35.1 L under a pressure of 77.2 in. Hg, what is the temperature of the gas, in °C?arrow_forwardA 275-mL sample of CO gas is collected over water at 31C and 755 mmHg. If the temperature of the gas collection apparatus rises to 39C, what is the new volume of the sample? Assume that the barometric pressure does not change.arrow_forward
- Hydrogen azide, HN3, decomposes on heating by the following unbalanced equation: HN3O(g)N2(g)+H2(g) If 3.0 atm of pure HN3(g) is decomposed initially, what is the final total pressure in the reaction container? What are the partial pressures of nitrogen and hydrogen gas? Assume the volume and temperature of the reaction container are constant.arrow_forwardYou have a gas, one of the three known phosphorus-fluorine compounds (PF3, PF3, and P2F4). To find out which, you have decided to measure its molar mass. (a) First, yon determine that the density of the gas is 5.60 g/L at a pressure of 0.971 atm and a temperature of 18.2 C. Calculate the molar mass and identify the compound. (b) To check the results from part (a), you decide to measure the molar mass based on the relative rales of effusion of the unknown gas and CO2. You find that CO2 effuses at a rate of 0.050 mol/min, whereas the unknown phosphorus fluoride effuses at a rate of 0.028 mol/min. Calculate the molar mass of the unknown gas based on these results.arrow_forward5-33 A certain quantity of helium gas is at a temperature of 27 °C and a pressure of 1.00 atm. What will the new temperature be if its volume is doubled at the same time that its pressure is decreased to one-half its original value?arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning