Concept explainers
A mixture of
Interpretation:
The percent by mass of
Concept Introduction:
The ideal gas equation elaborates the physical properties of gases by relating the pressure, volume, temperature, and the number of moles linked with each other with the help of four gas laws. This can be shown by
Here,
The formula for conversion of temperature from Celsius to kelvin is represented as
Answer to Problem 111AP
Solution:
Explanation of Solution
Given information:
Mass
Volume
Temperature
Pressure
The reaction of
The reaction of
The temperature is
The conversion of temperature from Celsius to Kelvin can be done by using the formula given below:
The equation for an ideal gas is
Calculate the number of moles of carbon dioxide as follows:
Substitute
From the above balanced stoichiometric equation it is seen that the ratio of number of moles of carbon dioxide and
So, the number of moles of the mixture is
The mass of the sample is
Let the mass of
So, the mass of
The molar mass of
The molar mass of
The number of moles can be calculated as
where m is the given mass and M is the molar mass
So, the moles of sample can be written as
Substitute
Rearrange the above equation as follows:
So, the mass of
Now, the percent by mass of
The percent by mass of
Want to see more full solutions like this?
Chapter 10 Solutions
Chemistry
- Given that a sample of air is made up of nitrogen, oxygen, and argon in the mole fractions 0.78 N2, 0.21 O2, and 0.010 Ar, what is the density of air at standard temperature and pressure?arrow_forwardPyruvic acid, HC3H3O3, is involved in cell metabolism. It can be assayed for (that is, the amount of it determined) by using a yeast enzyme. The enzyme makes the following reaction go to completion: HC3H3O3(aq)C2H4O(aq)+CO2(g) If a sample containing pyruvic acid gives 21.2 mL of carbon dioxide gas, CO2, at 349 mmHg and 30C, how many grams of pyruvic acid are there in the sample?arrow_forwardIf an electric current is passed through molten sodium chloride, elemental chlorine gas is generated as the sodium chloride is decomposed. :math>2NaCl(1)2Na(s)+Cl2(g) at volume of chlorine gas measured at 767 mm Hg at 25 °C would be generated by complete decomposition of 1.25 g of NaCl?arrow_forward
- How does hydraulic fracturing differ from previously used techniques for the recovery of natural gas from the earth?arrow_forwardAn organic compound contains C, H, N, and O. Combustion of 0.1023 g of the compound in excess oxygen yielded 0.2766 g CO2 and 0.0991 g H2O. A sample of 0.4831 g of the compound was analyzed for nitrogen by the Dumas method (see Exercise 129). At STP, 27.6 mL of dry N2 was obtained. In a third experiment, the density of the compound as a gas was found to be 4.02 g/L at 127C and 256 torr. What are the empirical and molecular formulas of the compound?arrow_forwardA mixture contained zinc sulfide, ZnS, and lead sulfide, PbS. A sample of the mixture weighing 6.12 g was reacted with an excess of hydrochloric acid. The reactions are ZnS(s)+2HCL(aq)ZnCl2(aq)+H2S(g)PbS(s)+2HCL(aq)PbCl2(aq)+H2S(g) If the sample reacted completely and produced 1.049 L of hydrogen sulfide, H2S, at 23C and 762 mmHg, what were the percentages of ZnS and PbS in the mixture?arrow_forward
- A mixture contained calcium carbonate, CaCO3, and magnesium carbonate, MgCO3. A sample of this mixture weighing 7.85 g was reacted with excess hydrochloric acid. The reactions are CaCO3(g)+2HCL(aq)CaCl2(aq)+H2O(I)+CO2(g)MgCO3(s)+2HCL(aq)MgCl2(aq)+H2O(I)+CO2(g) If the sample reacted completely and produced 1.94 L of carbon dioxide, CO2, at 25C and 785 mmHg, what were the percentages of CaCO3 and MgCO3 in the mixture?arrow_forwardAt elevated temperatures, sodium chlorate decomposes to produce sodium chloride and oxygen gas. A 0.8765-g sample of impure sodium chlorate was heated until the production of oxygen gas ceased. The oxygen gas collected over water occupied 57.2 mL at a temperature of 22C and a pressure of 734 torr. Calculate the mass percent of NaClO3 in the original sample. (At 22C the vapor pressure of water is 19.8 torr.)arrow_forwardTitanium(III) chloride is used in the manufacture of polyethylene. It is produced by the reaction (at high temperatures) between TiCl4 gas and H2. 2TiCl4(g)+H2(g)2TiCl3(s)+2HCl(g)Assume 100% yield and constant temperature and pressure. (a) How many liters of HCI gas can be produced by mixing 3.72 L of TiCl4 and 4.50 L of H2? (b) How many liters of reactant in excess are present after the reaction is complete?arrow_forward
- Tin(IV) chloride is used as an external coating on glass to toughen glass containers. It is prepared by reacting tin with chlorine gas. Sn(s)+2Cl2(g)SnCl4(l)The process requires a 25.0% excess of tin and has a yield of 73.7%. Calculate the mass of tin and the volume of chlorine gas (d=2.898g/Lat 25C, 1 atm) needed to produce 0.500 L of SnCl4(d=2.226g/mL).arrow_forwardYou have a gas, one of the three known phosphorus-fluorine compounds (PF3, PF3, and P2F4). To find out which, you have decided to measure its molar mass. (a) First, yon determine that the density of the gas is 5.60 g/L at a pressure of 0.971 atm and a temperature of 18.2 C. Calculate the molar mass and identify the compound. (b) To check the results from part (a), you decide to measure the molar mass based on the relative rales of effusion of the unknown gas and CO2. You find that CO2 effuses at a rate of 0.050 mol/min, whereas the unknown phosphorus fluoride effuses at a rate of 0.028 mol/min. Calculate the molar mass of the unknown gas based on these results.arrow_forwardAmmonia gas is synthesized by combining hydrogen and nitrogen: 3 H2(g) + N2(g) 2 NH3(g) (a) If you want to produce 562 g of NH3, what volume of H2 gas, at 56 C and 745 mm Hg, is required? (b) Nitrogen for this reaction will be obtained from air. What volume of air, measured at 29 C and 745 mm Hg pressure, will be required to provide the nitrogen needed to produce 562 g of NH3? Assume the sample of air contains 78.1 mole % N2.arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning