Concept explainers
Interpretation:
The partial pressure and total pressure of the given mixtures are to be calculated.
Concept introduction:
The mole fraction of an individual gas for the combination of gases is the ratio of the moles of the individual gas with the total number of moles.
Here,
The mole fraction of an individual gas for the combination of gases can be calculated from the ratio of the partial pressure of the individual gas with the total pressure of the combination.
Here,
Answer to Problem 101AP
Solution:
(a)The pressure of flask (iii) is
(b)The total pressure after opening the valve is
Explanation of Solution
Given information:
Volume:
Pressure:
a)The pressure in flak (ii) and (iii)
The number of molecules in flask (i) is 9, whereas in flask (ii) the number of molecules is also 9.
The volume of flask (i) is
Now, the temperature and number of moles are constant and the volume of flask (ii) is half of the volume of flask (i), so the pressure of flask (ii) will be:
Substitute
The number of molecules in flask (iii) is
The volume of flask (iii) is
So, the pressure of flask (ii) will be:
Substitute
Hence, the pressure of flask (iii) is
b) The total pressure and the partial pressure of each gas after the valves are opened.
Before opening the valves, flask (i) is considered.
So,
After opening the valves, the total of all flasks is considered.
So,
The combined gas law forms the relationship between pressure, volume, temperature, and number of moles. This can be shown as
For constant temperature:
Rearrange the above equation for final pressure as follows:
Substitute
The number of red color sphere is 15.
The number of blue color sphere is 15.
So, the total number of moles is as follows:
Substitute
Calculate the mole fraction of red color sphere as follows:
Substitute
Calculate the mole fraction of the blue color sphere as follows:
Substitute
Calculate the partial pressure of the red gas as
Substitute
Calculate the partial pressure of the blue gas as follows:
Substitute
Hence, the total pressure after opening the valve is
Want to see more full solutions like this?
Chapter 10 Solutions
Chemistry
- Pyruvic acid, HC3H3O3, is involved in cell metabolism. It can be assayed for (that is, the amount of it determined) by using a yeast enzyme. The enzyme makes the following reaction go to completion: HC3H3O3(aq)C2H4O(aq)+CO2(g) If a sample containing pyruvic acid gives 21.2 mL of carbon dioxide gas, CO2, at 349 mmHg and 30C, how many grams of pyruvic acid are there in the sample?arrow_forward47 HCl(g) reacts with ammonia gas, NH3(g), to form solid ammonium chloride. If a sample of ammonia occupying 250 mL at 21 C and a pressure of 140 torr is allowed to react with excess HCl, what mass of NH4Cl will form?arrow_forwardAmmonia gas is synthesized by combining hydrogen and nitrogen: 3 H2(g) + N2(g) 2 NH3(g) (a) If you want to produce 562 g of NH3, what volume of H2 gas, at 56 C and 745 mm Hg, is required? (b) Nitrogen for this reaction will be obtained from air. What volume of air, measured at 29 C and 745 mm Hg pressure, will be required to provide the nitrogen needed to produce 562 g of NH3? Assume the sample of air contains 78.1 mole % N2.arrow_forward
- A mixture contained zinc sulfide, ZnS, and lead sulfide, PbS. A sample of the mixture weighing 6.12 g was reacted with an excess of hydrochloric acid. The reactions are ZnS(s)+2HCL(aq)ZnCl2(aq)+H2S(g)PbS(s)+2HCL(aq)PbCl2(aq)+H2S(g) If the sample reacted completely and produced 1.049 L of hydrogen sulfide, H2S, at 23C and 762 mmHg, what were the percentages of ZnS and PbS in the mixture?arrow_forwardA mixture contained calcium carbonate, CaCO3, and magnesium carbonate, MgCO3. A sample of this mixture weighing 7.85 g was reacted with excess hydrochloric acid. The reactions are CaCO3(g)+2HCL(aq)CaCl2(aq)+H2O(I)+CO2(g)MgCO3(s)+2HCL(aq)MgCl2(aq)+H2O(I)+CO2(g) If the sample reacted completely and produced 1.94 L of carbon dioxide, CO2, at 25C and 785 mmHg, what were the percentages of CaCO3 and MgCO3 in the mixture?arrow_forwardA 1.0-L flask contains 10.0 g each of O2 and CO2 at 25 C. (a) Which gas has the greater partial pressure, O2 or CO2, or are they the same? (b) Which molecules have the greater rms speed, or are they the same? (c) Which molecules have the greater average kinetic energy, or are they the same?arrow_forward
- Liquid oxygen was first prepared by heating potassium chlorate, KClO3, in a closed vessel to obtain oxygen at high pressure. The oxygen was cooled until it liquefied. 2KClO3(s)2KCl(s)+3O2(g) If 171 g of potassium chlorate reacts in a 2.70-L vessel, which was initially evacuated, what pressure of oxygen will be attained when the temperature is finally cooled to 25C? Use the preceding chemical equation and ignore the volume of solid product.arrow_forward52 If tetraborane, B4H10, is treated with pure oxygen, it burns to give B2O3 and H2O: 2B4H10(s)+11O2(g)4B2O3(s)+10H2O(g) If a 0.050-g sample of tetraborane burns completely in O2, what will be the pressure of the gaseous water in a 4.25-L flask at 30.0 C?arrow_forwardYou have a 550.-mL tank of gas with a pressure of 1.56 atm at 24 C. You thought the gas was pure carbon monoxide gas, CO, but you later found it was contaminated by small quantities of gaseous CO2 and O2. Analysis shows that the tank pressure is 1.34 atm (at 24 C) if the CO2 is removed. Another experiment shows that 0.0870 g of O2 can be removed chemically. What are the masses of CO and CO2 in the tank, and what is the partial pressure of each of the three gases at 25 C?arrow_forward
- The following figure shows three 1.00-L bulbs connected by valves. Each bulb contains argon gas with amounts proportional to the number of circles pictorially represented in the chamber. All three bulbs are maintained at the same temperature. Unless stated otherwise, assume that the valves connecting the bulbs are closed and seal the gases in their respective chambers. Assume also that the volume between each bulb is negligible. (a) Which bulb has the highest pressure? (b) If the pressure in bulb A is 0.500 atm, what is the pressure in bulb C? (c) If the pressure in bulb A is 0.500 atm, what is the total pressure? (d) If the pressure in bulb A is 0.500 arm, and the valve between bulbs A and B is opened, redraw the figure shown above to accurately represent the gas atoms in all three bulbs. What is P A+P B+P C? Compare your answer in part (d) to that in part (c). (e) Follow the instructions of part (d) but now open only the valve between bulbs B and C.arrow_forwardA chemist weighed out 5.14 g of a mixture containing unknown amounts of BaO(s) and CaO(s) and placed the sample in a 1.50-L flask containing CO2(g) at 30.0C and 750. torr. After the reaction to form BaCO3(s) and CaCO3(s) was completed, the pressure of CO2(g) remaining was 230. torr. Calculate the mass percentages of CaO(s) and BaO(s) in the mixture.arrow_forwardConsider these four gas samples, all at the same temperature. The larger boxes have twice the volume of the smaller boxes. Rank the gas samples with respect to: (a) pressure, (b) density, (c) average kinetic energy, and (d) average molecular speed. (Green spheres are He; violet spheres are Ne.)arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning