A carbonated beverage is made by saturating water with carbon dioxide at 0°C and a pressure of 3.0 atm. The bottle is then opened at room temperature (25°C), and comes to equilibrium with air in the room containing CO 2 ( P CO 2 = 1.0 × 10 − 3 M / atm ) . The Henry's law constant for the solubility of CO 2 in water is 0.0769 M/atm at 0°C and 0.0313 M /atm at 25°C. (a) What is the concentration of carbon dioxide in the bottle before it is opened? (b) What is the concentration of carbon dioxide in the bottle after it has been opened and come to equilibrium with the air?
A carbonated beverage is made by saturating water with carbon dioxide at 0°C and a pressure of 3.0 atm. The bottle is then opened at room temperature (25°C), and comes to equilibrium with air in the room containing CO 2 ( P CO 2 = 1.0 × 10 − 3 M / atm ) . The Henry's law constant for the solubility of CO 2 in water is 0.0769 M/atm at 0°C and 0.0313 M /atm at 25°C. (a) What is the concentration of carbon dioxide in the bottle before it is opened? (b) What is the concentration of carbon dioxide in the bottle after it has been opened and come to equilibrium with the air?
Solution Summary: The author explains how Henry's law is used to describe the relationship between pressure and the concentration of the molecule.
A carbonated beverage is made by saturating water with carbon dioxide at 0°C and a pressure of 3.0 atm. The bottle is then opened at room temperature (25°C), and comes to equilibrium with air in the room containing
CO
2
(
P
CO
2
=
1.0
×
10
−
3
M
/
atm
)
. The Henry's law constant for the solubility of CO2 in water is 0.0769 M/atm at 0°C and 0.0313 M/atm at 25°C.
(a) What is the concentration of carbon dioxide in the bottle before it is opened?
(b) What is the concentration of carbon dioxide in the bottle after it has been opened and come to equilibrium with the air?
Vnk the elements or compounds in the table below in decreasing order of their boiling points. That is, choose 1 next to the substance with the highest bolling
point, choose 2 next to the substance with the next highest boiling point, and so on.
substance
C
D
chemical symbol,
chemical formula
or Lewis structure.
CH,-N-CH,
CH,
H
H 10: H
C-C-H
H H H
Cale
H 10:
H-C-C-N-CH,
Bri
CH,
boiling point
(C)
Сен
(C) B
(Choose
Please help me find the 1/Time, Log [I^-] Log [S2O8^2-], Log(time) on the data table. With calculation steps. And the average for runs 1a-1b. Please help me thanks in advance. Will up vote!
Q1: Answer the questions for the reaction below:
..!! Br
OH
a) Predict the product(s) of the reaction.
b) Is the substrate optically active? Are the product(s) optically active as a mix?
c) Draw the curved arrow mechanism for the reaction.
d) What happens to the SN1 reaction rate in each of these instances:
1. Change the substrate to
Br
"CI
2. Change the substrate to
3. Change the solvent from 100% CH3CH2OH to 10% CH3CH2OH + 90% DMF
4. Increase the substrate concentration by 3-fold.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.