Concept explainers
Calculate the vapor pressure of water over each of the following solutions of glycerol, C3H8O3, at 28°C
(a)
(b) 2.74 m
(c)
(a)
Interpretation:
To calculate vapor pressure of water if mass percent of glycerol is 30.6 %.
Concept introduction:
Formula to calculate moles of a component is −
Mole fraction of a component in a solution can be found out by dividing moles of the component by summation of mole of all components in the solution.
Raoult’s law states that vapor pressure of solvent in a mixture is equal to the product of mole fraction of solvent and vapor pressure of pure solvent.
Where,
Answer to Problem 34QAP
Vapor pressure of water if mass percent of glycerol is
Explanation of Solution
Given:
Vapor pressure of pure water = 28.55 mm Hg at 28 °C.
Given mass percent of glycerol is
So, mass of water is
Moles of each component of the solution are to be calculated as follows:
Mass of glycerol
Molar mass of glycerol
So, moles of glycerol is
Mass of water
Molar mass of water
So, moles of water is
Calculation of mole fraction of water
So, mole fraction of water is
Raoult’s law states that vapor pressure of solvent in a mixture is equal to the product of mole fraction of solvent and vapor pressure of pure solvent.
Where,
Mole fraction of water
Vapor pressure of pure solvent
Vapor pressure of water can be calculated as follows:
Hence, vapor pressure of water is
(b)
Interpretation:
To calculate vapour pressure of water if molality of the solution is
Concept introduction:
Molality is one way to define the concentration of solution. It is the ratio of moles of solute to mass of solvent in kilogram.
Formula of molality is-
Raoult’s law states that vapor pressure of solvent in a mixture is equal to product of mole fraction of solvent and vapor pressure of pure solvent.
Where,
Answer to Problem 34QAP
If molality of the solution is
Explanation of Solution
Given:
Vapor pressure of pure water = 28.55 mm Hg at 28 °C.
Given the molality is
Moles of solute (glycerol) can be calculated as follows:
So, moles of solute (glycerol) is
Moles of solvent can be calculated as follows:
Molar mass of water is
Mass of solvent (water) =1000 g
So, moles of solvent is
Mole fraction of solvent can be calculated as follows:
So, mole fraction of solvent (water) is
Raoult’s law states that vapor pressure of a solvent in a mixture is equal to the product of mole fraction of solvent and vapor pressure of pure solvent.
Where,
Mole fraction of water
Vapor pressure of pure solvent
Vapor pressure of water can be calculated as follows:
Hence, vapor pressure of water is
(c)
Interpretation:
To calculate vapor pressure of water if mole fraction of glycerol is
Concept introduction:
For a solution containing solute (glycerol) and solvent (water), summation of mole fraction is equal to one.
Raoult’s law states that vapor pressure of solvent in a mixture is equal to the product of mole fraction of solvent and vapor pressure of pure solvent.
Where,
Answer to Problem 34QAP
Vapor pressure of water if mole fraction of glycerol is
Explanation of Solution
Given:
Vapor pressure of pure water = 28.55 mm Hg at 28 °C.
Given mole fraction of glycerol
Addition of mole fraction of all components of a solution is equal to one.
So, mole fraction of water is
Raoult’s law states that vapor pressure of solvent in a mixture is equal to the product of mole fraction of solvent and vapor pressure of pure solvent.
Where,
Mole fraction of water
Vapor pressure of pure solvent
Vapor pressure of water can be calculated as follows:
Hence, vapor pressure of water is
Want to see more full solutions like this?
Chapter 10 Solutions
Chemistry: Principles and Reactions
- 2CIO2 + 20H-1 CIO31 + CIO2 + H2O Experiment [CIO2], M [OH-1], M 1 0.0500 0.100 23 2 0.100 0.100 3 0.100 0.0500 Initial Rate, M/s 0.0575 0.230 0.115 ... Given this date, calculate the overall order of this reaction.arrow_forward2 3 .(be)_[Ɔ+(be)_OI ← (b²)_IƆO+ (be)_I Experiment [1-] M 0.005 [OCI-] 0.005 Initial Rate M/min 0.000275 0.0025 0.005 0.000138 0.0025 0.0025 0.000069 4 0.0025 0.0025 0.000140 Calculate the rate constant of this reaction using the table data.arrow_forward1 2 3 4 I(aq) +OCl(aq) → IO¯¯(aq) + Cl¯(aq) Experiment [I-] M 0.005 [OCI-] 0.005 Initial Rate M/min 0.000275 0.0025 0.005 0.000138 0.0025 0.0025 Calculate the overall order of this reaction using the table data. 0.0025 0.000069 0.0025 0.000140arrow_forward
- H2O2(aq) +3 I¯(aq) +2 H+(aq) → 13(aq) +2 H₂O(l)· ••• Experiment [H2 O2]o (M) [I]o (M) [H+]。 (M) Initial rate (M/s) 1 0.15 0.15 0.05 0.00012 234 0.15 0.3 0.05 0.00024 0.3 0.15 0.05 0.00024 0.15 0.15 0.1 0.00048 Calculate the overall order of this reaction using the table data.arrow_forwardThe U. S. Environmental Protection Agency (EPA) sets limits on healthful levels of air pollutants. The maximum level that the EPA considers safe for lead air pollution is 1.5 μg/m³ Part A If your lungs were filled with air containing this level of lead, how many lead atoms would be in your lungs? (Assume a total lung volume of 5.40 L.) ΜΕ ΑΣΦ = 2.35 1013 ? atoms ! Check your rounding. Your final answer should be rounded to 2 significant figures in the last step. No credit lost. Try again.arrow_forwardY= - 0.039 (14.01) + 0.7949arrow_forward
- Suppose 1.76 g of magnesium acetate (Mg (CH3CO2)2) are dissolved in 140. mL of water. Find the composition of the resulting electrolyte solution. In particular, list the chemical symbols (including any charge) of each dissolved ion in the table below. List only one ion per row. mEq Then, calculate the concentration of each ion in dwrite the concentration in the second column of each row. Be sure you round your answers to the L correct number of significant digits. ion Add Row mEq L x 5arrow_forwardA pdf file of your hand drawn, stepwise mechanisms for the reactions. For each reaction in the assignment, you must write each mechanism three times (there are 10 reactions, so 30 mechanisms). (A) do the work on a tablet and save as a pdf., it is expected to write each mechanism out and NOT copy and paste the mechanism after writing it just once. Everything should be drawn out stepwise and every bond that is formed and broken in the process of the reaction, and is expected to see all relevant lone pair electrons and curved arrows.arrow_forwardNonearrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning