Concept explainers
(a)
Interpretation:
The solution having higher molarity needs to be determined.
Concept introduction:
Solutions are formed by homogeneous mixing of solute into a solvent. In the present case, solutes X and Y are dissolved using a solvent C to form a solution. Each case has its own uniqueness. The concentration of solutes and solvent should be defined in various terms to determine the strength of our solution through various angles.
Molarity is defined as ratio of number of moles of solute in a given volume of solution. It is represented by the unit “M”.
(b)
Interpretation:
The solution with higher mass percent needs to be determined.
Concept introduction:
Solutions are formed by homogeneous mixing of solute into a solvent. In the present case, solutes X and Y are dissolved using a solvent C to form a solution. Each case has its own uniqueness. The concentration of solutes and solvent should be defined in various terms to determine the strength of our solution through various angles.
Mass percent is defined as percent of mass of solute present in the solution.
(c)
Interpretation:
The solution having higher molality needs to be determined.
Concept introduction:
Solutions are formed by homogeneous mixing of solute into a solvent. In the present case, solutes X and Y are dissolved using a solvent C to form a solution. Each case has its own uniqueness. The concentration of solutes and solvent should be defined in various terms to determine the strength of our solution through various angles.
Molality of a solution is defined as number of moles of solute in 1 kg of the solvent.
(d)
Interpretation:
The solution having larger multiplier or i needs to be determined.
Concept introduction:
The multiplier is defined as the number of moles of particles of solution per mole of solute. In this case, this term can be redefined as the actual concentration of particle to the concentration of solute. The “particles” are the solutes X and Y in both cases. Hence, it is a relative ratio of concentration of solute molecules per mole of solute. Moles can be converted into molecules by multiplying it with
(e)
Interpretation:
The solution with solvent having higher mole fraction needs to be determined.
Concept introduction:
Mole fraction is a ratio of number of moles of one species with respect to total number of moles. In a solution, there is solvent and solute. Therefore, the number of moles of solvent and solute needs to be determined to obtain the total number of moles of solution.
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
Chemistry: Principles and Reactions
- Don't used hand raitingarrow_forwardGramicidin A can adopt more than one structure; NMR spectroscopy has revealed an “end-to-end” dimer form, and x-ray crystallography has revealed an “anti-parallel double- helical” form. Briefly outline and describe an experimentalapproach/strategy to investigate WHICH configuration (“end-to-end dimer” vs “anti-paralleldouble helical”) gramicidin adopts in an actual lipid bilayer.arrow_forwardDon't used hand raitingarrow_forward
- CHEM2323 Problem 2-24 Tt O e: ל Predict the product(s) of the following acid/base reactions. Draw curved arrows to show the formation and breaking of bonds. If the bonds needed are not drawn out, you should redraw them. + BF3 (a) (b) HI + (c) OH -BF Problem 2-25 Use curved arrows and a proton (H+) to draw the protonated form of the following Lewis bases. Before starting, add all missing lone pairs. (a) (b) :0: (c) N 1 CHEM2323 PS CH02 Name:arrow_forwardCHEM2323 Problem 2-26 Tt O PS CH02 Name: Use the curved-arrow formalism to show how the electrons flow in the resonance form on the left to give the one on the right. (Draw all lone pairs first) (a) NH2 NH2 + (b) Problem 2-27 Double bonds can also act like Lewis bases, sharing their electrons with Lewis acids. Use curved arrows to show how each of the following double bonds will react with H-Cl and draw the resulting carbocation. (a) H2C=CH2 (b) (c) Problem 2-28 Identify the most electronegative element in each of the following molecules: (a) CH2FCI F Problem 2-29 (b) FCH2CH2CH2Br (c) HOCH2CH2NH2 (d) CH3OCH2Li F 0 0 Use the electronegativity table in Figure 2.3 to predict which bond in the following pairs is more polar and indicate the direction of bond polarity for each compound. (a) H3C-Cl or Cl-CI (b) H3C-H or H-CI (c) HO-CH3 or (CH3)3Si-CH3 (d) H3C-Li or Li-OHarrow_forwardDon't used hand raitingarrow_forward
- Don't used hand raitingarrow_forwardat 32.0 °C? What is the osmotic pressure (in atm) of a 1.46 M aqueous solution of urea [(NH2), CO] at 3 Round your answer to 3 significant digits.arrow_forwardReagan is doing an atomic absorption experiment that requires a set of zinc standards in the 0.4-1.6 ppm range. A 1000 ppm Zn solution was prepared by dissolving the necessary amount of solid Zn(NO3)2 in water. The standards can be prepared by diluting the 1000 ppm Zn solution. Table 1 shows one possible set of serial dilutions (stepwise dilution of a solution) that Reagan could perform to make the necessary standards. Solution A was prepared by diluting 5.00 ml of the 1000 ppm Zn standard to 50.00 ml. Solutions C-E are called "calibration standards" because they will be used to calibrate the atomic absorption spectrometer. a. Compare the solution concentrations expressed as ppm Zn and ppm Zn(NO3)2. Compare the concentrations expressed as M Zn and M Zn(NO3)2 - Which units allow easy conversion between chemical species (e.g. Zn and Zn(NO3)2)? - Which units express concentrations in numbers with easily expressed magnitudes? - Suppose you have an analyte for which you don't know the molar…arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning