OPERATIONS MANAGEMENT IN THE SUPPLY CHAIN: DECISIONS & CASES (Mcgraw-hill Series Operations and Decision Sciences)
7th Edition
ISBN: 9780077835439
Author: Roger G Schroeder, M. Johnny Rungtusanatham, Susan Meyer Goldstein
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 14P
a)
Summary Introduction
To prepare: The
Introduction:
Exponential smoothing:
In the exponential smoothing forecast method, older data is given lesser importance and the newer data is given more importance. It is efficient for making short term forecasts.
b)
Summary Introduction
To prepare: The forecast for the last 7 days and compare the total absolute deviation.
c)
Summary Introduction
To explain: What does the example illustrate.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Sales of tablet computers at Marika Gonzalez's electronics store in Washington, D.C., over the past 10 weeks are shown
in the table below:
2
Week 1
Demand 19 23
Week
1
Demand
19
Forecast 19.0
3
27
2
23
4
36
3
27
5
6
24 28 37
4
36
a) The forecast for weeks 2 through 10 using exponential smoothing with a = 0.50 and a week 1 initial forecast of 19.0
are (round your responses to two decimal places):
5
24
6
28
8
20
7
37
9
26
8
20
10
29
9
26
D
10
29
The demand (in number of units) for Apple iPad over the past 6 months at BestBuy is
summarized below.
Month
Nov 2019
Dec 2019
Demand
45
48
Jan 2020
50
Feb 2020
Mar 2020
Apr 2020
42
46
51
Consider the following three forecasting methods:
• Two-month weighted moving average, with weights 6 and 2 (more weight assigned
to more recent data)
Exponential smoothing with a = 0.7. Let the initial forecast for Nov 2019 be 46.
• A trend line projection in the form ŷ = a+bx . To simplify computations,
transform the value of x (time) to simpler numbers – designate Nov 2019 as x=1,
Dec 2019 as x= 2, etc.
(a ) For each of the above methods, forecast the demand of Apple iPad for May 2020.
(b) Consider only the two-month weighted moving average method, compute the
MAD measure and the MSE measure using the data from Jan 2020.
(c) Use the trend line to forecast the demand of Apple iPad for Dec 2020.
Give your opinion regarding the reliability of the forecast.
The data below represents the quarterly changes in demand for a product over the
next 3 months.
Quarter
Demand
Quarter
Demand
Quarter
Demand
1
120
5
164
9.
180
158
155
10
199
3
164
7
158
11
172
4
160
8.
163
12
170
Apply the following forecasting techniques of the data to estimate the demand in
period 13:
a. Regression;
b. Moving average with base m=3;
c. Exponential smoothing with a = 0.1.
Chapter 10 Solutions
OPERATIONS MANAGEMENT IN THE SUPPLY CHAIN: DECISIONS & CASES (Mcgraw-hill Series Operations and Decision Sciences)
Ch. 10.S - Ace Hardware sells spare parts for lawn mowers....Ch. 10.S - eXcel The daily demand for chocolate donuts from...Ch. 10.S - The SureGrip Tire Company produces tires of...Ch. 10.S - eXcelManagement believes there is a seasonal...Ch. 10.S - Management of the ABC Floral Shop believes that...Ch. 10 - Prob. 1DQCh. 10 - What is the distinction between forecasting and...Ch. 10 - Qualitative forecasting methods should be used...Ch. 10 - Describe the uses of qualitative, time-series, and...Ch. 10 - Qualitative forecasts and causal forecasts are not...
Ch. 10 - Prob. 6DQCh. 10 - What are the advantages of exponential smoothing...Ch. 10 - How should the choice of be made for exponential...Ch. 10 - Prob. 9DQCh. 10 - Prob. 10DQCh. 10 - Explain how CPFR can be used to reduce forecasting...Ch. 10 - Under what circumstances might CPFR be useful, and...Ch. 10 - Daily demand for marigold flowers at a large...Ch. 10 - The number of daily calls for the repair of Speedy...Ch. 10 - 3-The ABC Floral Shop sold the following number of...Ch. 10 - The Handy Dandy Department Store had forecast...Ch. 10 - 5-The Yummy Ice Cream Company uses the exponential...Ch. 10 - Using the data in problem 2, prepare exponentially...Ch. 10 - Compute the errors of bias and absolute deviation...Ch. 10 - eXcel At the ABC Floral Shop, an argument...Ch. 10 - Only a portion of the following table for...Ch. 10 - A candy store has sold the following number of...Ch. 10 - eXcel A grocery store sells the following number...Ch. 10 - Prob. 12PCh. 10 - The Easyfit tire store had demand for tires shown...Ch. 10 - Prob. 14P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- The file P13_42.xlsx contains monthly data on consumer revolving credit (in millions of dollars) through credit unions. a. Use these data to forecast consumer revolving credit through credit unions for the next 12 months. Do it in two ways. First, fit an exponential trend to the series. Second, use Holts method with optimized smoothing constants. b. Which of these two methods appears to provide the best forecasts? Answer by comparing their MAPE values.arrow_forwardThe Baker Company wants to develop a budget to predict how overhead costs vary with activity levels. Management is trying to decide whether direct labor hours (DLH) or units produced is the better measure of activity for the firm. Monthly data for the preceding 24 months appear in the file P13_40.xlsx. Use regression analysis to determine which measure, DLH or Units (or both), should be used for the budget. How would the regression equation be used to obtain the budget for the firms overhead costs?arrow_forwardUnder what conditions might a firm use multiple forecasting methods?arrow_forward
- The owner of a restaurant in Bloomington, Indiana, has recorded sales data for the past 19 years. He has also recorded data on potentially relevant variables. The data are listed in the file P13_17.xlsx. a. Estimate a simple regression equation involving annual sales (the dependent variable) and the size of the population residing within 10 miles of the restaurant (the explanatory variable). Interpret R-square for this regression. b. Add another explanatory variableannual advertising expendituresto the regression equation in part a. Estimate and interpret this expanded equation. How does the R-square value for this multiple regression equation compare to that of the simple regression equation estimated in part a? Explain any difference between the two R-square values. How can you use the adjusted R-squares for a comparison of the two equations? c. Add one more explanatory variable to the multiple regression equation estimated in part b. In particular, estimate and interpret the coefficients of a multiple regression equation that includes the previous years advertising expenditure. How does the inclusion of this third explanatory variable affect the R-square, compared to the corresponding values for the equation of part b? Explain any changes in this value. What does the adjusted R-square for the new equation tell you?arrow_forwardThe file P13_29.xlsx contains monthly time series data for total U.S. retail sales of building materials (which includes retail sales of building materials, hardware and garden supply stores, and mobile home dealers). a. Is seasonality present in these data? If so, characterize the seasonality pattern. b. Use Winters method to forecast this series with smoothing constants = = 0.1 and = 0.3. Does the forecast series seem to track the seasonal pattern well? What are your forecasts for the next 12 months?arrow_forwardThe file P13_22.xlsx contains total monthly U.S. retail sales data. While holding out the final six months of observations for validation purposes, use the method of moving averages with a carefully chosen span to forecast U.S. retail sales in the next year. Comment on the performance of your model. What makes this time series more challenging to forecast?arrow_forward
- The file P13_26.xlsx contains the monthly number of airline tickets sold by the CareFree Travel Agency. a. Create a time series chart of the data. Based on what you see, which of the exponential smoothing models do you think will provide the best forecasting model? Why? b. Use simple exponential smoothing to forecast these data, using a smoothing constant of 0.1. c. Repeat part b, but search for the smoothing constant that makes RMSE as small as possible. Does it make much of an improvement over the model in part b?arrow_forwardThe file P13_28.xlsx contains monthly retail sales of U.S. liquor stores. a. Is seasonality present in these data? If so, characterize the seasonality pattern. b. Use Winters method to forecast this series with smoothing constants = = 0.1 and = 0.3. Does the forecast series seem to track the seasonal pattern well? What are your forecasts for the next 12 months?arrow_forwardThe file P13_02.xlsx contains five years of monthly data on sales (number of units sold) for a particular company. The company suspects that except for random noise, its sales are growing by a constant percentage each month and will continue to do so for at least the near future. a. Explain briefly whether the plot of the series visually supports the companys suspicion. b. By what percentage are sales increasing each month? c. What is the MAPE for the forecast model in part b? In words, what does it measure? Considering its magnitude, does the model seem to be doing a good job? d. In words, how does the model make forecasts for future months? Specifically, given the forecast value for the last month in the data set, what simple arithmetic could you use to obtain forecasts for the next few months?arrow_forward
- A small computer chip manufacturer wants to forecast monthly ozperating costs as a function of the number of units produced during a month. The company has collected the 16 months of data in the file P13_34.xlsx. a. Determine an equation that can be used to predict monthly production costs from units produced. Are there any outliers? b. How could the regression line obtained in part a be used to determine whether the company was efficient or inefficient during any particular month?arrow_forwardThe file P13_25.xlsx contains the quarterly numbers of applications for home mortgage loans at a branch office of Northern Central Bank. a. Create a time series chart of the data. Based on what you see, which of the exponential smoothing models do you think will provide the best forecasting model? Why? b. Use simple exponential smoothing to forecast these data, using a smoothing constant of 0.1. c. Repeat part b, but search for the smoothing constant that makes RMSE as small as possible. Does it make much of an improvement over the model in part b? Is it guaranteed to produce better forecasts for the future?arrow_forwardSuppose that a regional express delivery service company wants to estimate the cost of shipping a package (Y) as a function of cargo type, where cargo type includes the following possibilities: fragile, semifragile, and durable. Costs for 15 randomly chosen packages of approximately the same weight and same distance shipped, but of different cargo types, are provided in the file P13_16.xlsx. a. Estimate a regression equation using the given sample data, and interpret the estimated regression coefficients. b. According to the estimated regression equation, which cargo type is the most costly to ship? Which cargo type is the least costly to ship? c. How well does the estimated equation fit the given sample data? How might the fit be improved? d. Given the estimated regression equation, predict the cost of shipping a package with semifragile cargo.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,Contemporary MarketingMarketingISBN:9780357033777Author:Louis E. Boone, David L. KurtzPublisher:Cengage LearningMarketingMarketingISBN:9780357033791Author:Pride, William MPublisher:South Western Educational Publishing
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,
Contemporary Marketing
Marketing
ISBN:9780357033777
Author:Louis E. Boone, David L. Kurtz
Publisher:Cengage Learning
Marketing
Marketing
ISBN:9780357033791
Author:Pride, William M
Publisher:South Western Educational Publishing
Single Exponential Smoothing & Weighted Moving Average Time Series Forecasting; Author: Matt Macarty;https://www.youtube.com/watch?v=IjETktmL4Kg;License: Standard YouTube License, CC-BY
Introduction to Forecasting - with Examples; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=98K7AG32qv8;License: Standard Youtube License