Concept explainers
When I mole of benzene is vaporized at a constant pressure of 1.00 atm and at its boiling point of 353.0 K, 30.79 kJ of energy (heat) is absorbed and the volume change is +28.90 L. What are ∆E and ∆H for this process?
Interpretation:
Change in enthalpy
Concept introduction:
Internal energy of a system is total energy present in the system. In simple words, it is the sum of kinetic and potential energy of the particles in the system. According to First law of Thermodynamics, Energy of a system is conserved. It is only transferred from one state to another that is from system to surroundings and vice versa. So
Further,
Enthalpy is heat content of the system. The value of enthalpy does not depend on the path of a reaction but depend on state of the system. It has a unique value for each state of the system. Thus, enthalpy is a state function. Enthalpy is represented as,
Enthalpy change, denoted by
Further,
Answer to Problem 141CP
Answer
Change in enthalpy
Change in internal energy
Explanation of Solution
Explanation
Determine
Enthalpy of a system corresponds to amount of heat present in the system. Change in enthalpy is change in the heat content of the system during the course of reaction. That is, heat content of the system either decreases or increases after the completion of the reaction. Endothermic reaction proceeds by absorption of heat that at the end of the reaction, heat content of the system is increased. So the amount of heat absorbed or evolved in the reaction corresponds to the enthalpy change of a reaction.
Calculate the work done, ‘w’.
Using the three equations,
Calculate
‘q’and work done ‘w’ values are calculated in the previous steps. By substituting these values in the equation,
Conclusion
Change in enthalpy
Want to see more full solutions like this?
Chapter 10 Solutions
Student Solutions Manual for Zumdahl/Zumdahl/DeCoste?s Chemistry, 10th Edition
- A green plant synthesizes glucose by photosynthesis, as shown in the reaction: 6CO2(g) + 6H2O(l) C6H12O6(s) + 6O2(g) Animals use glucose as a source of energy: C6H12O6(s) + 6O2(g) 6CO2(g) + 6HO2(l) If we were to assume that both of these processes occur to the same extent in a cyclic process, what thermodynamic property must have a nonzero value?arrow_forwardEnthalpy changes often help predict whether or not a process will be spontaneous. What type of reaction is more likely to be spontaneous: an exothermic or an endothermic one? Provide two examples that support your assertion and one counterexample.arrow_forwardSolid NH4NO3 is placed in a beaker containing water at 25 C. When the solid has completely dissolved, the temperature of the solution is 23.5 C. (a) Was the process exothermic or endothermic? (b) Was the process spontaneous? (c) Did the entropy of the system increase? (d) Did the entropy of the universe increase?arrow_forward
- One statement of the second law of thermodynamics is that heat cannot be turned completely into work. Another is that the entropy of the universe always increases. How are these two statements related?arrow_forwardThe formation of aluminum oxide from its elements is highly exothermic. If 2.70 g Al metal is burned in pure O2 to give A12O3, calculate how much thermal energy is evolved in the process (at constant pressure).arrow_forwardWhen most biological enzymes are heated, they lose their catalytic activity. This process is called denaturing. The change original enzyme new form that occurs on heating is endothermic and spontaneous. Is the structure of the original enzyme or its new form more ordered (has the smaller positional probability)? Explain.arrow_forward
- Would the amount of heat absorbed by the dissolution in Example 5.6 appear greater, lesser, or remain the same if the heat capacity of the calorimeter were taken into account? Explain your answer.arrow_forwardWhat is entropy? Why is entropy important?arrow_forwardWhat is the second law of thermodynamics? For any process, there are four possible sign combinations for Ssys and Ssurr. Which sign combination(s) always give a spontaneous process? Which sign combination(s) always give a non-spontaneous process? Which sign combination(s) may or may not give a spontaneous process?arrow_forward
- When vapors from hydrochloric acid and aqueous ammonia come in contact, they react, producing a white cloud of solid NH4C1 (Figure 18.9). HCI(g) + NH3(g) NH4Cl(s) Defining the reactants and products as the system under study: (a) Predict whether S(system), S(surroundings), S(universe), rH, and rG (at 298 K) are greater than zero, equal to zero, or less than zero; and explain your prediction. Verify your predictions by calculating values for each of these quantities. (b) Calculate the value of Kp for this reaction at 298 K.arrow_forwardAcetic acid, a weak acid, was added to a beaker containing water at 25 C, giving a solution containing molecular acetic acid, hydronium ion, and acetate ion at equilibrium. The temperature did not change. (a) Is the solution process exothermic or endothermic? (b) Was the dissolving process and partial ionization spontaneous? (c) Did the entropy of the system increase or decrease? (d) Did the entropy of the universe increase or decrease?arrow_forwardThe decomposition of ozone, O3, to oxygen, O2, is an exothermic reaction. What is the sign of q? If you were to touch a flask in which ozone is decomposing to oxygen, would you expect the flask to feel warm or cool?arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning