In each of the following groups of substances, pick the one that has the given property. Justify your answer.
a. highest boiling point: HBr, Kr, or Cl2
b. highest freezing point: H2O, NaCl, or HF
c. lowest vapor pressure at 25°C: Cl2, Br2, or I2
d. lowest freezing point: N2, CO, or CO2
e. lowest boiling point: CH4, CH3CH3, or CH3CH2CH3
f. highest boiling point: HF, HCl, or HBr
g.
(a)
Interpretation:
From the given set of compounds, the compounds with highest boiling point, highest freezing point, lowest vapor pressure, lowest freezing point and lowest boiling point have to be identified and the same has to be justified.
Concept Introduction:
Matter is generally classified into three distinct categories - solid state, liquid state, gaseous state. In all of these three states of matter, the constituents (molecules or ions) of the matter do possess forces between them which are not the same in each state. These forces are called intermolecular forces.
The intermolecular forces are relatively strong in the solids than liquids and weaker in the gaseous substances. This variation influences many of the properties of all the three distinct states of the matter.
If the strength of intermolecular force is high in a substance then its melting point, freezing point, boiling point will be high and the vapor pressure will be low.
The strength of intermolecular forces is,
Answer to Problem 43E
The compound with highest boiling point is
Explanation of Solution
Identify the compound which has highest boiling point and justify it.
Analyze why the other compounds don’t have the highest boiling point and justify the same.
The compounds other than
The compound with the highest boiling point is identified and the same is justified.
(b)
Interpretation:
From the given set of compounds, the compounds with highest boiling point, highest freezing point, lowest vapor pressure, lowest freezing point and lowest boiling point have to be identified and the same has to be justified.
Concept Introduction:
Matter is generally classified into three distinct categories - solid state, liquid state, gaseous state. In all of these three states of matter, the constituents (molecules or ions) of the matter do possess forces between them which are not the same in each state. These forces are called intermolecular forces.
The intermolecular forces are relatively strong in the solids than liquids and weaker in the gaseous substances. This variation influences many of the properties of all the three distinct states of the matter.
If the strength of intermolecular force is high in a substance then its melting point, freezing point, boiling point will be high and the vapor pressure will be low.
The strength of intermolecular forces is,
Answer to Problem 43E
The compound with highest freezing point or melting point is
Explanation of Solution
Identify the compound which has highest melting point and justify it.
Analyze why the other compounds don’t have the highest melting point and justify the same.
The compounds other than
Hence
The compound with the highest melting point is identified and the same is justified.
(c)
Interpretation:
From the given set of compounds, the compounds with highest boiling point, highest freezing point, lowest vapor pressure, lowest freezing point and lowest boiling point have to be identified and the same has to be justified.
Concept Introduction:
Matter is generally classified into three distinct categories - solid state, liquid state, gaseous state. In all of these three states of matter, the constituents (molecules or ions) of the matter do possess forces between them which are not the same in each state. These forces are called intermolecular forces.
The intermolecular forces are relatively strong in the solids than liquids and weaker in the gaseous substances. This variation influences many of the properties of all the three distinct states of the matter.
If the strength of intermolecular force is high in a substance then its melting point, freezing point, boiling point will be high and the vapor pressure will be low.
The strength of intermolecular forces is,
Answer to Problem 43E
The compound with lowest vapor pressure is
Explanation of Solution
Identify the compound that has the lowest vapor pressure and justify it.
A boiling liquid partly vaporizes and the vaporized molecules do exist in equilibrium with the liquid molecules. The pressure exerted by the vaporized molecules is termed as vapor pressure. If the intermolecular forces are weak the molecules are not held together strongly that they are able to move freely. The pressure exerted by the molecules is directly proportional to the free movement of molecules. If the intermolecular forces are strong, the movement of the molecules is restricted to some extent that the pressure exerted by them will be low. Thus increase in the strength of intermolecular forces in a substance decreases its vapor pressure.
Analyze why the other compounds don’t have the lowest vapor pressure and justify the same.
The intermolecular forces exist in them are not of high strength.
Both
The compound with the lowest vapor pressure is identified and the same is justified.
(d)
Interpretation:
From the given set of compounds, the compounds with highest boiling point, highest freezing point, lowest vapor pressure, lowest freezing point and lowest boiling point have to be identified and the same has to be justified.
Concept Introduction:
Matter is generally classified into three distinct categories - solid state, liquid state, gaseous state. In all of these three states of matter, the constituents (molecules or ions) of the matter do possess forces between them which are not the same in each state. These forces are called intermolecular forces.
The intermolecular forces are relatively strong in the solids than liquids and weaker in the gaseous substances. This variation influences many of the properties of all the three distinct states of the matter.
If the strength of intermolecular force is high in a substance then its melting point, freezing point, boiling point will be high and the vapor pressure will be low.
The strength of intermolecular forces is,
Answer to Problem 43E
The compound with lowest freezing point is
Explanation of Solution
Identify the compound that has the lowest freezing point and justify it.
Analyze why the other compounds don’t have the lowest freezing point and justify the same.
The compounds other than
The other compounds
The compound with the lowest freezing point is identified and the same is justified.
(e)
Interpretation:
From the given set of compounds, the compounds with highest boiling point, highest freezing point, lowest vapor pressure, lowest freezing point and lowest boiling point have to be identified and the same has to be justified.
Concept Introduction:
Matter is generally classified into three distinct categories - solid state, liquid state, gaseous state. In all of these three states of matter, the constituents (molecules or ions) of the matter do possess forces between them which are not the same in each state. These forces are called intermolecular forces.
The intermolecular forces are relatively strong in the solids than liquids and weaker in the gaseous substances. This variation influences many of the properties of all the three distinct states of the matter.
If the strength of intermolecular force is high in a substance then its melting point, freezing point, boiling point will be high and the vapor pressure will be low.
The strength of intermolecular forces is,
Answer to Problem 43E
The compound with lowest boiling point is
Explanation of Solution
Identify the compound which has lowest boiling point and justify it.
Analyze why the other compounds don’t have the lowest boiling point and justify the same.
The compounds other than
The compound with the lower boiling point is identified and the same is justified.
(f)
Interpretation:
From the given set of compounds, the compounds with highest boiling point, highest freezing point, lowest vapor pressure, lowest freezing point and lowest boiling point have to be identified and the same has to be justified.
Concept Introduction:
Matter is generally classified into three distinct categories - solid state, liquid state, gaseous state. In all of these three states of matter, the constituents (molecules or ions) of the matter do possess forces between them which are not the same in each state. These forces are called intermolecular forces.
The intermolecular forces are relatively strong in the solids than liquids and weaker in the gaseous substances. This variation influences many of the properties of all the three distinct states of the matter.
If the strength of intermolecular force is high in a substance then its melting point, freezing point, boiling point will be high and the vapor pressure will be low.
The strength of intermolecular forces is,
Answer to Problem 43E
The compound with highest boiling point is
Explanation of Solution
Identify the compound which has highest boiling point and justify it.
Analyze why the other compounds don’t have the highest boiling point and justify the same.
The compounds other than
All the compounds in the given set are polar covalent compounds. Among the given compounds
The compound with the highest boiling point is identified and the same is justified.
(g)
Interpretation:
From the given set of compounds, the compounds with highest boiling point, highest freezing point, lowest vapor pressure, lowest freezing point and lowest boiling point have to be identified and the same has to be justified.
Concept Introduction:
Matter is generally classified into three distinct categories - solid state, liquid state, gaseous state. In all of these three states of matter, the constituents (molecules or ions) of the matter do possess forces between them which are not the same in each state. These forces are called intermolecular forces.
The intermolecular forces are relatively strong in the solids than liquids and weaker in the gaseous substances. This variation influences many of the properties of all the three distinct states of the matter.
If the strength of intermolecular force is high in a substance then its melting point, freezing point, boiling point will be high and the vapor pressure will be low.
The strength of intermolecular forces is,
Answer to Problem 43E
The compound with the lowest vapor pressure is
Explanation of Solution
Identify the compound which has lowest vapor pressure and justify it.
The compound
A boiling liquid partly vaporizes and the vaporized molecules do exist in equilibrium with the liquid molecules. The pressure exerted by the vaporized molecules is termed as vapor pressure. If the intermolecular forces are weak the molecules are held together loosely. Then they exhibit faster movement. The more the free movement of molecules the more will be the pressure exerted by them. If the intermolecular forces are strong, the movement of the molecules is restricted to some extent that the pressure exerted by them will be low. Thus increase in the strength of intermolecular forces in a substance decreases its vapor pressure.
Analyze why the other compounds don’t have the lowest vapor pressure and justify the same.
The intermolecular forces exist in them are not of high strength.
In
The compound with the lowest vapor pressure is identified and the same is justified.
Want to see more full solutions like this?
Chapter 10 Solutions
Student Solutions Manual for Zumdahl/Zumdahl/DeCoste?s Chemistry, 10th Edition
- Methane, CH4, reacts with chlorine, Cl2, to produce a series of chlorinated hydrocarbons: methyl chloride (CH3Cl), methylene chloride (CH2Cl3), chloroform (CHCl3), and carbon tetrachloride (CCl4). Which compound has the highest vapor pressure at room temperature? Explain.arrow_forwardAre changes in state physical or chemical changes? Explain. What type of forces must be overcome to melt or vaporize a substance (are these forces intramolecular or intermolecular)? Define the molar heat of fusion and molar heat of vaporization. Why is the molar heat of vaporization of water so much larger than its molar heat of fusion? Why does the boiling point of a liquid vary with altitude?arrow_forwardYou add 0.255 g of an orange, crystalline compound whose empirical formula is C10H8Fe to 11.12 g of benzene. The boiling point of the benzene rises from 80.10 C to 80.26 C. What are the molar mass and molecular formula of the compound?arrow_forward
- Use Figure 11.7 to estimate the boiling point of carbon tetrachloride, CCl4, under an external pressure of 250 mmHg.arrow_forwardFollow the step-wise process outlined in Problem 31 to calculate the amount of heat involved in condensing 100.00 g of benzene gas (C6H6) at 80.00C to liquid benzene at 25.00C. Use Tables 8.1 and 8.2 for the specific heat, boiling point, and heat of vaporization of benzene.arrow_forwardIs it possible to liquefy nitrogen at room temperature (about 25 C)? Is it possible to liquefy sulfur dioxide at room temperature? Explain your answers.arrow_forward
- Arrange the given compounds in the picture (in order of increasing boiling point). 1 is the lowest boiling point, 5 is the highest boiling point.arrow_forward101 Chem101 Pt Periodic Table - Ptable Answered: Using the data in the cf2o lewis structure - Google Sea X O X A app.101edu.co Question 16 of 34 Submit Liquid butane is used in cigarette lighters. The boiling point of butane at 1 atm pressure is -1.0 °C and its AHvap is 22.44 kJ/mol. What is the pressure (in atm) of the butane in the lighter at 25.0 °C? atm 1 2 4 C 7 8 9. +/- х 100 8:03 PM 12/13/2021 ...arrow_forward5. The heat of vaporization of an organic solvent is 39.8 kJ/mol. Find the temperature in degrees Celsius at which the solvent boils on a day in a ski resort when the barometric pressure is 0.749 atm. The normal boiling point of the liquid is 73.2°C (R = 8.314 J/K mol).)arrow_forward
- Calculate the energy (in kJ) required to heat 0.491 grams of water from -46.0 ℃ to 142.5 ℃.Melting Point.H2O.H2O = 0.0 ℃Boiling Point.H2O.H2O = 100.0 ℃arrow_forwardThere are three sets of sketches below, showing the same pure molecular compound (water, molecular formula H2O) at three different temperatures. The sketches are drawn as if a sample of water were under a microscope so powerful that individual atoms could be seen. Only one sketch in each set is correct. Use the slider to choose the correct sketch in each set. You may need the following information: melting point of H₂O: 0.0 °C boiling point of H₂O: 100.0 °C B C (Choose one) (Choose one) (Choose one) 1 2 3 4 3 4 5 1 2 3 4 5 1 I | 35. °C 269. °C -22.°Carrow_forwardThere are three sets of sketches below, showing the same pure molecular compound (water, molecular formula H₂O) at three different temperatures. The sketches are drawn as if a sample of water were under a microscope so powerful that individual atoms could be seen. Only one sketch in each set is correct. Use the slider to choose the correct sketch in each set. You may need the following information: melting point of H₂O: 0.0 °C boiling point of H₂O: 100.0 °C A B (Choose one) (Choose one) 79. °C 1 ² 3 4 5 -16. °℃ (Choose one) X 13 i i 215. °C Sarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning