Concept explainers
(a)
Interpretation:
From the given set of compounds, the compounds with highest boiling point, lowest freezing point, smallest vapor pressure, greatest viscosity, greatest heat of vaporization, smallest enthalpy of fusion have to be identified and the same has to be justified.
Concept Introduction:
Matter is generally classified into three distinct categories viz., solid state, liquid state, gaseous state. In all of these three states of matter, the constituents (molecules or ions) of the matter do possess forces between them which are not the same in each state. These forces are called intermolecular forces.
The intermolecular forces are relatively strong in the solids than liquids and weaker in the gaseous substances. This variation influences many of the properties of all the three distinct
The strength of intermolecular forces is,
(a)
Answer to Problem 44E
The compound with highest boiling point is
Explanation of Solution
Identify the compound which has highest boiling point and justify it.
Analyze why the other compounds don’t have the highest boiling point and justify the same.
The compounds other than
The compound with the highest boiling point is identified and the same is justified.
(b)
Interpretation:
From the given set of compounds, the compounds with highest boiling point, lowest freezing point, smallest vapor pressure, greatest viscosity, greatest heat of vaporization, smallest enthalpy of fusion have to be identified and the same has to be justified.
Concept Introduction:
Matter is generally classified into three distinct categories viz., solid state, liquid state, gaseous state. In all of these three states of matter, the constituents (molecules or ions) of the matter do possess forces between them which are not the same in each state. These forces are called intermolecular forces.
The intermolecular forces are relatively strong in the solids than liquids and weaker in the gaseous substances. This variation influences many of the properties of all the three distinct states of the matter. Compounds with strong intermolecular forces have high melting point, boiling point, freezing point, viscosity enthalpy of vaporization, enthalpy of fusion and low vapor pressure.
The strength of intermolecular forces is,
(b)
Answer to Problem 44E
The compound with lowest freezing point is
Explanation of Solution
Identify the compound which has lowest freezing point and justify it.
The compound with lowest freezing point is
Analyze why the other compounds don’t have the lowest freezing point and justify the same.
The compounds other than
The other compounds
The compound with the lowest boiling point is identified and the same is justified.
(c)
Interpretation:
From the given set of compounds, the compounds with highest boiling point, lowest freezing point, smallest vapor pressure, greatest viscosity, greatest heat of vaporization, smallest enthalpy of fusion have to be identified and the same has to be justified.
Concept Introduction:
Matter is generally classified into three distinct categories viz., solid state, liquid state, gaseous state. In all of these three states of matter, the constituents (molecules or ions) of the matter do possess forces between them which are not the same in each state. These forces are called intermolecular forces.
The intermolecular forces are relatively strong in the solids than liquids and weaker in the gaseous substances. This variation influences many of the properties of all the three distinct states of the matter. Compounds with strong intermolecular forces have high melting point, boiling point, freezing point, viscosity enthalpy of vaporization, enthalpy of fusion and low vapor pressure.
The strength of intermolecular forces is,
(c)
Answer to Problem 44E
The compound with lowest vapor pressure is
Explanation of Solution
Identify the compound which has lowest vapor pressure and justify it.
The compound
A boiling liquid partly vaporizes and the vaporized molecules do exist in equilibrium with the liquid molecules. The pressure exerted by the vaporized molecules is termed as vapor pressure. Molecules are able to move freely if the intermolecular forces are weak. The more the free movement of molecules the more will be the pressure exerted by them. If the intermolecular forces are strong, the movement of the molecules is restricted to some extent that the pressure exerted by them will be low. Thus increase in the strength of intermolecular forces in a substance decreases its vapor pressure.
Analyze why the other compounds don’t have the lowest vapor pressure and justify the same.
The intermolecular forces exist in them are not of high strength.
In
The compound with the lowest vapor pressure is identified and the same is justified.
(d)
Interpretation:
From the given set of compounds, the compounds with highest boiling point, lowest freezing point, smallest vapor pressure, greatest viscosity, greatest heat of vaporization, smallest enthalpy of fusion have to be identified and the same has to be justified.
Concept Introduction:
Matter is generally classified into three distinct categories viz., solid state, liquid state, gaseous state. In all of these three states of matter, the constituents (molecules or ions) of the matter do possess forces between them which are not the same in each state. These forces are called intermolecular forces.
The intermolecular forces are relatively strong in the solids than liquids and weaker in the gaseous substances. This variation influences many of the properties of all the three distinct states of the matter. Compounds with strong intermolecular forces have high melting point, boiling point, freezing point, viscosity enthalpy of vaporization, enthalpy of fusion and low vapor pressure.
The strength of intermolecular forces is,
(d)
Answer to Problem 44E
The compound with greatest viscosity is
Explanation of Solution
Identify the compound which has highest viscosity and justify it.
Viscosity of a liquid is its resistance to flow. A liquid is said to be highly viscous if it hardly flows. When the intermolecular forces are strong, the molecules are unable to move freely. The strong hydrogen bonding in the molecules of
Analyze why the other compounds don’t have the highest viscosity and justify the same.
The intermolecular forces exist in them are not of high strength.
The compound with the highest viscosity is identified and the same is justified.
(e)
Interpretation:
From the given set of compounds, the compounds with highest boiling point, lowest freezing point, smallest vapor pressure, greatest viscosity, greatest heat of vaporization, smallest enthalpy of fusion have to be identified and the same has to be justified.
Concept Introduction:
Matter is generally classified into three distinct categories viz., solid state, liquid state, gaseous state. In all of these three states of matter, the constituents (molecules or ions) of the matter do possess forces between them which are not the same in each state. These forces are called intermolecular forces.
The intermolecular forces are relatively strong in the solids than liquids and weaker in the gaseous substances. This variation influences many of the properties of all the three distinct states of the matter. Compounds with strong intermolecular forces have high melting point, boiling point, freezing point, viscosity enthalpy of vaporization, enthalpy of fusion and low vapor pressure.
The strength of intermolecular forces is,
(e)
Answer to Problem 44E
The compound with greatest heat of vaporization is
Explanation of Solution
Identify the compound which has highest heat of vaporization and justify it.
The compound with highest heat of vaporization is
Analyze why the other compounds don’t have the highest heat of vaporization and justify the same.
The low strength of intermolecular forces in
Unlike
The compound with the highest heat of vaporization is identified and the same is justified.
(f)
Interpretation:
From the given set of compounds, the compounds with highest boiling point, lowest freezing point, smallest vapor pressure, greatest viscosity, greatest heat of vaporization, smallest enthalpy of fusion have to be identified and the same has to be justified.
Concept Introduction:
Matter is generally classified into three distinct categories viz., solid state, liquid state, gaseous state. In all of these three states of matter, the constituents (molecules or ions) of the matter do possess forces between them which are not the same in each state. These forces are called intermolecular forces.
The intermolecular forces are relatively strong in the solids than liquids and weaker in the gaseous substances. This variation influences many of the properties of all the three distinct states of the matter. Compounds with strong intermolecular forces have high melting point, boiling point, freezing point, viscosity enthalpy of vaporization, enthalpy of fusion and low vapor pressure.
The strength of intermolecular forces is,
(f)
Answer to Problem 44E
The compound with lowest enthalpy of fusion is
Explanation of Solution
Identify the compound which has lowest enthalpy of fusion and justify it.
The compound with lowest enthalpy of fusion is
Analyze why the other compounds don’t have the lowest enthalpy of vaporization and justify the same.
The intermolecular forces in the compounds given except
The compound with the lowest enthalpy of fusion is identified and the same is justified.
Want to see more full solutions like this?
Chapter 10 Solutions
Student Solutions Manual for Zumdahl/Zumdahl/DeCoste?s Chemistry, 10th Edition
- Q8: Draw the resonance structures for the following molecule. Show the curved arrows (how you derive each resonance structure). Circle the major resonance contributor. одarrow_forwardQ9: Explain why compound I is protonated on O while compound II is protonated on N. NH2 DD I II NH2arrow_forwardComplete the following reaction by identifying the principle organic product of the reactionarrow_forward
- Denote the dipole for the indicated bonds in the following molecules. ✓ H3C CH3 B F-CCl3 Br-Cl H3C —Si(CH3)3 CH3 OH HO HO H HO OH vitamin Carrow_forward(a) What is the hybridization of the carbon in the methyl cation (CH3*) and in the methyl anion (CH3)? (b) What is the approximate H-C-H bond angle in the methyl cation and in the methyl anion?arrow_forward10:16 ☑ Vo)) Vo) 4G LTE 76% Complete the following reaction by identifying the principle organic product of the reaction. HO OH ↑ CH2N2 OH ? ○ A. 01 N₂H2C OH ОН B. HO OCH3 OH ○ C. HO OH ŎCH₂N2 ○ D. H3CO OH он Quiz navigation 1 2 3 4 5 11 12 Next page 10 6 7 8 9 10arrow_forward
- Which one of the following statements explain why protecting groups are referred to as “a necessary evil in organic synthesis”? Question 12Select one or more: A. They increase the length and cost of the synthesis B. Every synthesis employs protecting groups C. Protecting group have no role to play in a synthesis D. They minimize the formation of side productsarrow_forwardWhich of the following attributes is a key advantage of the chiral auxiliary approach over the chiral pool approach in asymmetric synthesis? Question 10Select one: A. Chiral auxiliaries are cheaper than chiral pool substrates B. Chiral auxiliary can be recovered and recycled unlike chiral pool substrates. C. The use of chiral auxiliaries provide enantiopure products, while chiral pool reactions are only enantioselective D. The chiral auxiliaries are naturally occurring and do not require synthesisarrow_forwardIn the following molecule, indicate the hybridization and shape of the indicated atoms. CH3 CH3 H3C HO: CI:arrow_forward
- Which of the following are TRUE about linear syntheses? Question 7Select one: A. They are easier to execute B. They are the most efficient strategy for all syntheses C. They are generally shorter than convergent syntheses D. They are less versatile compared to convergent synthesesarrow_forwardWhich of the following characteristics is common among chiral pool substrates? Question 4Select one: A. They have good leaving groups B. They are all achiral C. All have a multiplicity of chiral centres D. They have poor leaving groupsarrow_forwardDetermine whether the following reaction is an example of a nucleophilic substitution reaction: H NO2 H+ NO 2 + Molecule A Molecule B Is this a nucleophilic substitution reaction? If this is a nucleophilic substitution reaction, answer the remaining questions in this table. What word or two-word phrase is used to describe the role Molecule A plays in this reaction? What word or two-word phrase is used to describe the role Molecule B plays in this reaction? Use a 6 + symbol to label the electrophilic carbon that is attacked during the substitution. Highlight the leaving group on the appropriate reactant. O Yes ○ No ☐ 0 dx 000 HE ?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning