Concept explainers
Interpretation:
The lattice energy of
Concept Introduction:
Lattice energy:
The amount of energy that is necessary for the conversion of one mole of ionic solid to its constituent ions in gaseous phase is called Lattice energy.
Hess’s law:
The enthalpy change for given set of reactants to the given set of products is the same, whether the process takes place in single or sequence of steps. This is called as Hess’s law.
Enthalpy is generally calculated from the standard enthalpy of formation.
With the
To calculate: The lattice energy of
Answer to Problem 10.83QP
The lattice energy of
Explanation of Solution
Lattice energy
Lattice energy =
=
=
Lattice energy of
The lattice energy of
Want to see more full solutions like this?
Chapter 10 Solutions
Chemistry: Atoms First
- Arrange the following series of compounds in order of increasing lattice energies. (a) NaBr, NaCl, KBr (b) MgO, CaO, CaCl2 (c) LiF, BeF2, BeOarrow_forwardCompare your answers from parts a and b of Exercise 69 of Chapter 3 with H values calculated for each reaction using standard enthalpies of formation in Appendix 4. Do enthalpy changes calculated from bond energies give a reasonable estimate of the actual values?arrow_forwardhat does temperature measure? Are the molecules in a beaker of warm water moving at the same speed as the molecules in a beaker of cold water? Explain? What is heat? Is heat the same as temperature?arrow_forward
- Consider the reactions of silver metal, Ag(s), with each of the halogens: fluorine, F2(g), chlorine, Cl2(g), and bromine, Br2(l). What chapter data could you use to decide which reaction is most exothermic? Which reaction is that?arrow_forwardA commercial process for preparing ethanol (ethyl alcohol), C2H5OH, consists of passing ethylene gas. C2H4, and steam over an acid catalyst (to speed up the reaction). The gas-phase reaction is Use bond enthalpies (Table 9.5) to estimate the enthalpy change for this reaction when 37.0 g of ethyl alcohol is produced.arrow_forwardBond Enthalpy When atoms of the hypothetical element X are placed together, they rapidly undergo reaction to form the X2 molecule: X(g)+X(g)X2(g) a Would you predict that this reaction is exothermic or endothermic? Explain. b Is the bond enthalpy of X2 a positive or a negative quantity? Why? c Suppose H for the reaction is 500 kJ/mol. Estimate the bond enthalpy of the X2 molecule. d Another hypothetical molecular compound, Y2(g), has a bond enthalpy of 750 kJ/mol, and the molecular compound XY(g) has a bond enthalpy of 1500 kJ/mol. Using bond enthalpy information, calculate H for the following reaction. X2(g)+Y2(g)2XY(g) e Given the following information, as well as the information previously presented, predict whether or not the hypothetical ionic compound AX is likely to form. In this compound, A forms the A+ cation, and X forms the X anion. Be sure to justify your answer. Reaction: A(g)+12X2(g)AX(s)The first ionization energy of A(g) is 400 kJ/mol. The electron affinity of X(g) is 525 kJ/mol. The lattice energy of AX(s) is 100 kJ/mol. f If you predicted that no ionic compound would form from the reaction in Part e, what minimum amount of AX(s) lattice energy might lead to compound formation?arrow_forward
- The standard enthalpies of formation for S(g), F(g), SF4(g), and SF6(g) are +278.8, +79.0, 775, and +1209 KJ/mol, respectively. a. Use these data to estimate the energy of an SF bond. b. Compare your calculated value to the value given in Table 3-3. What conclusions can you draw? c. Why are the Hf values for S(g) and F(g) not equal to zero, since sulfur and fluorine are elements?arrow_forwardEstimate H for the following reactions using bond energies given in Table 8.5. 3CH2=CH2(g) + 3H2(g) 3CH2CH3(g) The enthalpies of formation for C6H6(g) and C6H12 (g) are 82.9 and 90.3 kJ/mol. respectively. Calculate H for the two reactions using standard enthalpies of formation from Appendix 4. Account for any differences between the results obtained from the two methods.arrow_forwardUse the data given below to construct a Born-Haber cycle to determine the lattice energy of CaO. △ H°(kJ) Ca(s) → Ca(g) 193 Ca(g) → Ca+1(g) + e⁻ 590 Ca+1(g) → Ca+2(g) + e⁻ 1010 2 O(g) → O2(g) -498 O(g) + e⁻ → O-1(g) -141 O-1(g) + e⁻ → O-2(g) 878 Ca(s) + (1/2) O2(g) → CaO(s) -635arrow_forward
- Use the Born-Haber cycle to calculate the lattice energy of KF. [The heat of sublimation of K is 91.6 kJ·mol−1 and ΔfH(KF) = −567.3 kJ·mol−1. Bond enthalpy for F2 is 158.8 kJ·mol−1. Other data may be found in the Ionization Energies Table and the Electron Affinities Table.]arrow_forwardUse the following data to estimate AHf for sodium chloride. ΔΗ = || 11/13 2 Lattice energy Ionization energy for Na Electron affinity of Cl Bond energy of Cl₂ Enthalpy of sublimation for Na Na(s) + Cl₂(g) → NaCl(s) kJ/mol 787 kJ/mol 495 kJ/mol 349 kJ/mol 239 kJ/mol 109 kJ/molarrow_forwardThe ionic radii of element E and a different metallic element, M, are shown in the following table: Both elements form oxides, E2O and MO. If lattice energy is defined as the energy required to separate an ionic solid into individual separate gaseous ions, would the lattice energy of MO be less than, equal to, or greater than the lattice energy of the oxide E2O? Justify your answer in terms of Coulomb's lawarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax