Chemistry: Atoms First
2nd Edition
ISBN: 9780073511184
Author: Julia Burdge, Jason Overby Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 10.63QP
From the standard enthalpies of formation, calculate ΔH°r×n for the reaction
For C6H12(l), ΔHf° = −151.9 kJ/mol.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
Chemistry: Atoms First
Ch. 10.1 - Prob. 10.1.1SRCh. 10.1 - Prob. 10.1.2SRCh. 10.1 - Prob. 10.1.3SRCh. 10.2 - Calculate the overall change in internal energy,...Ch. 10.2 - Calculate the change in total internal energy for...Ch. 10.2 - Calculate the magnitude of q for a system that...Ch. 10.2 - The diagram on the left shows a system before a...Ch. 10.2 - Prob. 10.2.1SRCh. 10.2 - Prob. 10.2.2SRCh. 10.3 - Determine the work done (in joules) when a sample...
Ch. 10.3 - Calculate the work done by or on the system during...Ch. 10.3 - (a) Against what external pressure must a gas...Ch. 10.3 - The diagram on the left shows a sample of gas...Ch. 10.3 - Given the thermochemical equation for...Ch. 10.3 - Calculate the solar energy required to produce...Ch. 10.3 - Prob. 3PPBCh. 10.3 - The diagrams represent systems before and after...Ch. 10.3 - Prob. 10.3.1SRCh. 10.3 - Prob. 10.3.2SRCh. 10.4 - Prob. 10.4WECh. 10.4 - Prob. 4PPACh. 10.4 - Prob. 4PPBCh. 10.4 - A metal pellet with a mass of 100.0 g. originally...Ch. 10.4 - What would the final temperature be if the pellet...Ch. 10.4 - Prob. 5PPBCh. 10.4 - Prob. 5PPCCh. 10.4 - A Famous Amos bite-sized chocolate chip cookie...Ch. 10.4 - A serving of Grape-Nuts cereal (5.80 g) is burned...Ch. 10.4 - Prob. 6PPBCh. 10.4 - Suppose an experiment to determine the energy...Ch. 10.4 - Prob. 10.4.1SRCh. 10.4 - Prob. 10.4.2SRCh. 10.4 - Prob. 10.4.3SRCh. 10.4 - Prob. 10.4.4SRCh. 10.5 - Given the following thermochemical equations....Ch. 10.5 - Use the thermochemical equations provided in...Ch. 10.5 - Prob. 10.5.1SRCh. 10.5 - Prob. 10.5.2SRCh. 10.6 - Prob. 10.8WECh. 10.6 - Using data from Appendix 2, calculate Hrn for...Ch. 10.6 - Prob. 8PPBCh. 10.6 - The diagrams represent a system before and after a...Ch. 10.6 - Given the following information, calculate the...Ch. 10.6 - Use the following data to calculate Hf for...Ch. 10.6 - Prob. 9PPBCh. 10.6 - The diagrams represent a system before and after a...Ch. 10.6 - Prob. 10.6.1SRCh. 10.6 - Prob. 10.6.2SRCh. 10.6 - Prob. 10.6.3SRCh. 10.7 - Use bond enthalpies from Table 10.4 to estimate...Ch. 10.7 - Use bond enthalpies from fable 10.4 to estimate...Ch. 10.7 - Prob. 10PPBCh. 10.7 - Prob. 10PPCCh. 10.7 - Prob. 10.7.1SRCh. 10.7 - Prob. 10.7.2SRCh. 10.7 - Prob. 10.7.3SRCh. 10.7 - Prob. 10.7.4SRCh. 10.8 - Prob. 10.11WECh. 10.8 - Prob. 11PPACh. 10.8 - The lattice energy of MgO is 3890 kJ/mol, and the...Ch. 10.8 - Prob. 11PPCCh. 10.8 - Prob. 10.8.1SRCh. 10.8 - Prob. 10.8.2SRCh. 10 - Define these terms: system, surroundings, thermal...Ch. 10 - What is heat? How does heat differ from thermal...Ch. 10 - Prob. 10.3QPCh. 10 - Define these terms: thermochemistry, exothermic...Ch. 10 - Prob. 10.5QPCh. 10 - Describe two exothermic processes and two...Ch. 10 - Decomposition reactions are usually endothermic,...Ch. 10 - On what law is the first law of thermodynamics...Ch. 10 - Explain what is meant by a state function. Give...Ch. 10 - Prob. 10.10QPCh. 10 - Prob. 10.11QPCh. 10 - Prob. 10.12QPCh. 10 - Prob. 10.13QPCh. 10 - Prob. 10.14QPCh. 10 - Prob. 10.15QPCh. 10 - Prob. 10.16QPCh. 10 - Define these terms: enthalpy and enthalpy of...Ch. 10 - Prob. 10.18QPCh. 10 - Prob. 10.19QPCh. 10 - Prob. 10.20QPCh. 10 - Prob. 10.21QPCh. 10 - A gas expands and does PV work on the surroundings...Ch. 10 - Prob. 10.23QPCh. 10 - Prob. 10.24QPCh. 10 - Consider the reaction at a certain temperature. If...Ch. 10 - Prob. 10.26QPCh. 10 - Prob. 10.27QPCh. 10 - Prob. 10.28QPCh. 10 - Prob. 10.1VCCh. 10 - Prob. 10.2VCCh. 10 - Prob. 10.3VCCh. 10 - Prob. 10.4VCCh. 10 - Prob. 10.5VCCh. 10 - Prob. 10.6VCCh. 10 - Prob. 10.7VCCh. 10 - Referring to the process depicted in Figure 10.10,...Ch. 10 - What is the difference between specific heat and...Ch. 10 - Define calorimetry and describe two commonly used...Ch. 10 - Prob. 10.31QPCh. 10 - Prob. 10.32QPCh. 10 - A sheet of gold weighing 10.0 g and at a...Ch. 10 - Prob. 10.34QPCh. 10 - A quantity of 2.00 102 mL of 0.862 M HC1 is mixed...Ch. 10 - Prob. 10.36QPCh. 10 - Prob. 10.37QPCh. 10 - Prob. 10.38QPCh. 10 - A 25.95-g sample of methanol at 35.6C is added to...Ch. 10 - Prob. 10.40QPCh. 10 - Prob. 10.41QPCh. 10 - Prob. 10.42QPCh. 10 - Prob. 10.43QPCh. 10 - Prob. 10.44QPCh. 10 - Prob. 10.45QPCh. 10 - Prob. 10.46QPCh. 10 - Prob. 10.47QPCh. 10 - Prob. 10.48QPCh. 10 - Prob. 10.49QPCh. 10 - Prob. 10.50QPCh. 10 - What is meant by the standard-state condition?Ch. 10 - How are the standard enthalpies of an element and...Ch. 10 - What is meant by the standard enthalpy of a...Ch. 10 - Write the equation for calculating the enthalpy of...Ch. 10 - Prob. 10.55QPCh. 10 - Prob. 10.56QPCh. 10 - Prob. 10.57QPCh. 10 - Calculate the heats of combustion for the...Ch. 10 - Calculate the heats of combustion for the...Ch. 10 - Prob. 10.60QPCh. 10 - Prob. 10.61QPCh. 10 - Prob. 10.62QPCh. 10 - From the standard enthalpies of formation,...Ch. 10 - Prob. 10.64QPCh. 10 - Prob. 10.65QPCh. 10 - Prob. 10.66QPCh. 10 - Which is the more negative quantity at 25C: Hf for...Ch. 10 - Prob. 10.68QPCh. 10 - Prob. 10.69QPCh. 10 - Prob. 10.70QPCh. 10 - Prob. 10.71QPCh. 10 - Prob. 10.72QPCh. 10 - Prob. 10.73QPCh. 10 - Prob. 10.74QPCh. 10 - Prob. 10.75QPCh. 10 - Prob. 10.76QPCh. 10 - For the reaction 2C2H6(g)+7O2(g)4CO2(g)+6H2O(g)...Ch. 10 - Prob. 10.78QPCh. 10 - Prob. 10.79QPCh. 10 - Prob. 10.9VCCh. 10 - Prob. 10.10VCCh. 10 - Prob. 10.11VCCh. 10 - Prob. 10.12VCCh. 10 - Explain how the lattice energy of an ionic...Ch. 10 - Specify which compound in each of the following...Ch. 10 - Prob. 10.82QPCh. 10 - Prob. 10.83QPCh. 10 - Prob. 10.84QPCh. 10 - Prob. 10.85QPCh. 10 - Prob. 10.86QPCh. 10 - Prob. 10.87QPCh. 10 - Hydrazine (N2H4) decomposes according to the...Ch. 10 - Prob. 10.89QPCh. 10 - Prob. 10.90QPCh. 10 - Prob. 10.91QPCh. 10 - Prob. 10.92QPCh. 10 - Prob. 10.93QPCh. 10 - Prob. 10.94QPCh. 10 - You are given the following data....Ch. 10 - Prob. 10.96QPCh. 10 - Prob. 10.97QPCh. 10 - Prob. 10.98QPCh. 10 - Prob. 10.99QPCh. 10 - Compare the heat produced by the complete...Ch. 10 - The so-called hydrogen economy is based on...Ch. 10 - Prob. 10.102QPCh. 10 - Prob. 10.103QPCh. 10 - Prob. 10.104QPCh. 10 - Prob. 10.105QPCh. 10 - Prob. 10.106QPCh. 10 - Prob. 10.107QPCh. 10 - Prob. 10.108QPCh. 10 - A certain gas initially at 0.050 L undergoes...Ch. 10 - Prob. 10.110QPCh. 10 - The first step in the industrial recovery of zinc...Ch. 10 - Calculate the standard enthalpy change for the...Ch. 10 - Portable hot packs are available for skiers and...Ch. 10 - Prob. 10.114QPCh. 10 - Prob. 10.115QPCh. 10 - Prob. 10.116QPCh. 10 - Prob. 10.117QPCh. 10 - Prob. 10.118QPCh. 10 - Prob. 10.119QPCh. 10 - Prob. 10.120QPCh. 10 - Prob. 10.121QPCh. 10 - Prob. 10.122QPCh. 10 - Prob. 10.123QPCh. 10 - Prob. 10.124QPCh. 10 - Prob. 10.125QPCh. 10 - Vinyl chloride (C2H3Cl) differs from ethylene...Ch. 10 - Prob. 10.127QPCh. 10 - Prob. 10.128QPCh. 10 - Prob. 10.129QPCh. 10 - Determine the standard enthalpy of formation of...Ch. 10 - Prob. 10.131QPCh. 10 - Prob. 10.132QPCh. 10 - Prob. 10.133QPCh. 10 - Prob. 10.134QPCh. 10 - Prob. 10.135QPCh. 10 - Prob. 10.136QPCh. 10 - Both glucose and fructose arc simple sugars with...Ch. 10 - About 6.0 1013 kg of CO2 is fixed (converted to...Ch. 10 - Experiments show that it takes 1656 kJ/mol to...Ch. 10 - From a thermochemical point of view, explain why a...Ch. 10 - Prob. 10.141QPCh. 10 - Prob. 10.142QPCh. 10 - Prob. 10.143QPCh. 10 - Prob. 10.144QPCh. 10 - Prob. 10.145QPCh. 10 - Prob. 10.146QPCh. 10 - Prob. 10.147QPCh. 10 - Prob. 10.148QPCh. 10 - A drivers manual states that the stopping distance...Ch. 10 - Prob. 10.150QPCh. 10 - Prob. 10.151QPCh. 10 - Prob. 10.152QPCh. 10 - When 1.034 g of naphthalene (C10H8), is burned in...Ch. 10 - Prob. 10.154QPCh. 10 - A gas company in Massachusetts charges 27 cents...Ch. 10 - Prob. 10.156QPCh. 10 - Prob. 10.157QPCh. 10 - According to information obtained from...Ch. 10 - Using data from Appendix 2, calculate the standard...Ch. 10 - Using data from Appendix 2, calculate the standard...Ch. 10 - Prob. 10.3KSPCh. 10 - Prob. 10.4KSP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The thermochemical equation for the burning of methane, the main component of natural gas, is CH4(g)+2O2(g)CO2(g)+2H2O(l)H=890kJ (a) Is this reaction endothermic or exothermic? (b) What quantities of reactants and products are assumed if H = 890 kJ? (c) What is the enthalpy change when 1.00 g methane burns in an excess of oxygen?arrow_forwardThe enthalpy change for the following reaction is 393.5 kJ. C(s,graphite)+O2(g)CO2(g) (a) Is energy released from or absorbed by the system in this reaction? (b) What quantities of reactants and products are assumed? (c) Predict the enthalpy change observed when 3.00 g carbon burns in an excess of oxygen.arrow_forwardGasohol, a mixture of gasoline and ethanol, C2H5OH, is used as automobile fuel. The alcohol releases energy in a combustion reaction with O2. C2H5OH(l)+3O2(g)2CO2(g)+3H2O(l) If 0.115 g ethanol evolves 3.62 kJ when burned at constant pressure, calculate the combustion enthalpy for ethanol.arrow_forward
- One step in the manufacturing of sulfuric acid is the conversion of SO2(g) to SO3(g). The thermochemical equation for this process is SO2(g)+12O2(g)SO3(g)H=98.9kJ The second step combines the SO3 with H2O to make H2SO4. (a) Calculate the enthalpy change that accompanies the reaction to make 1.00 kg SO3(g). (b) Is heat absorbed or released in this process?arrow_forwardThe enthalpy of combustion of diamond is -395.4 kJ/mol. C s, dia O2 g CO2 g Determine the fH of C s, dia.arrow_forwardGive the definition of the standard enthalpy of formation for a substance. Write separate reactions for the formation of NaCl, H2O , C6H12O6, and PbSO4 that have H values equal to Hf for each compound.arrow_forward
- A 50-mL solution of a dilute AgNO3 solution is added to 100 mL of a base solution in a coffee-cup calorimeter. As Ag2O(s) precipitates, the temperature of the solution increases from 23.78 C to 25.19 C. Assuming that the mixture has the same specific heat as water and a mass of 150 g, calculate the heat q. Is the precipitation reaction exothermic or endothermic?arrow_forwardIs the following reaction the appropriate one to use in determining the enthalpy of formation of methane, CH4(g)? Why or why not? C(g)+4H(g)CH4(g)arrow_forwardThe process of dissolving ammonium nitrate, NH4NO3, in water is an endothermic process. What is the sign of q? If you were to add some ammonium nitrate to water in a flask, would you expect the flask to feel warm or cool?arrow_forward
- Calculate the standard enthalpy of combustion for benzene, C6H6. C6H6() + 15/2 O2(g) 6 CO2(g) + 3 H2O() rH = ? The enthalpy of formation of benzene is known [rH[C6H6()] = +49.0 kJ/mol], and other values needed can be found in Appendix L.arrow_forwardWhite phosphorus, P4, ignites in air to produce P4O10. When 3.56 g P4 is burned, 85.8 kJ of thermal energy is evolved at constant pressure. Calculate the combustion enthalpy of P4.arrow_forwardIn a coffee-cup calorimeter, 150.0 mL of 0.50 M HCI is added to 50.0 mL of 1.00 M NaOH to make 200.0 g solution at an initial temperature of 48.2C. If the enthalpy of neutralization for the reaction between a strong acid and a strong base is 56 kJ/mol, calculate the final temperature of the calorimeter contents. Assume the specific heat capacity of the solution is 4.184 J/g C and assume no heat Joss to the surroundings.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY