MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL)
4th Edition
ISBN: 9781266368622
Author: NEAMEN
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 10.7TYU
To determine
The value of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2. This is a small signal problem. Suppose the MOSFETS drawn have lp = 1 mA when VGS = 2.5 V, and
Vth = 0.5 V. Suppose the BJTs drawn have Ic = 1 mA when VBE = 0.7 V.
Av
VDD = 5V VDD VDD
T
T
Rc = 1 kn
Vin
RB2 = 10 kn
RB1 = 10 kn
w/li
w
Rp = 1 kn
R₁
Vout
(a) Derive voltage gain Ay and input impedance Zin assuming R₁ ➡8.
(b) Plot Ay as a function of R, assuming R, is attached between Vout and ground.
(c) Rederive Ay and Zin assuming Roo and after swapping the BJT and MOSFET.
RL
10- Which of the following modulating signal voltage would cause over-modulation on a carrier
voltage of 10V?
a) 9.5
b) 9.99
c) 10
d) 12
Vi
RB
Vcc
Rc
our
A BJT (B=200) is implemented in an
amplifier circuit, with a VCC of 15
volts. One wishes to set the Q point
at IC = 5.76 mA and VCE = 6.73 volts
(DC). Determine RB.
Chapter 10 Solutions
MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL)
Ch. 10 - The circuit parameters for the two-transistor...Ch. 10 - Consider the circuit shown in Figure 10.3. The...Ch. 10 - The parameters of the circuit shown in Figure 10.5...Ch. 10 - Consider the Widlar current source in Figure 10.9....Ch. 10 - Consider the circuit in Figure 10.10. Assume the...Ch. 10 - A Widlar current source is shown in Figure 10.9....Ch. 10 - Figure 10.12 shows the N-output current mirror....Ch. 10 - Prob. 10.1TYUCh. 10 - Prob. 10.2TYUCh. 10 - For the Wilson current source in Figure 10.8, the...
Ch. 10 - Prob. 10.4TYUCh. 10 - Prob. 10.8EPCh. 10 - Prob. 10.9EPCh. 10 - Consider the JFET circuit in Figure 10.24. The...Ch. 10 - Consider Design Example 10.8. Assume transistor...Ch. 10 - The bias voltages of the MOSFET current source in...Ch. 10 - Prob. 10.7TYUCh. 10 - All transistors in the MOSFET modified Wilson...Ch. 10 - A simple BJT amplifier with active load is shown...Ch. 10 - Prob. 10.9TYUCh. 10 - Prob. 10.10TYUCh. 10 - Prob. 10.11TYUCh. 10 - Prob. 10.12EPCh. 10 - For the circuit in Figure 10.40(a), the transistor...Ch. 10 - Prob. 10.12TYUCh. 10 - Repeat Example 10.12 for the case where a resistor...Ch. 10 - Prob. 10.14TYUCh. 10 - Prob. 1RQCh. 10 - Explain the significance of the output resistance...Ch. 10 - Prob. 3RQCh. 10 - Prob. 4RQCh. 10 - What is the primary advantage of a BJT cascode...Ch. 10 - Prob. 6RQCh. 10 - Can a piecewise linear model of the transistor be...Ch. 10 - Prob. 8RQCh. 10 - Sketch the basic MOSFET two-transistor current...Ch. 10 - Discuss the effect of mismatched transistors on...Ch. 10 - Prob. 11RQCh. 10 - Sketch a MOSFET cascode current source circuit and...Ch. 10 - Discuss the operation of an active load.Ch. 10 - What is the primary advantage of using an active...Ch. 10 - Prob. 15RQCh. 10 - What is the impedance seen looking into a simple...Ch. 10 - What is the advantage of using a cascode active...Ch. 10 - Prob. 10.1PCh. 10 - The matched transistors Q1 and Q2 in Figure...Ch. 10 - Prob. 10.3PCh. 10 - Reconsider the circuit in Figure 10.2(a). Let...Ch. 10 - Prob. 10.5PCh. 10 - The transistor and circuit parameters for the...Ch. 10 - The bias voltages in the circuit shown in Figure...Ch. 10 - Consider the current source in Figure 10.2(b). The...Ch. 10 - Prob. 10.9PCh. 10 - Prob. 10.10PCh. 10 - Prob. D10.11PCh. 10 - In the circuit in Figure P10.11, the transistor...Ch. 10 - Prob. D10.13PCh. 10 - Consider the circuit shown in Figure P 10.14. The...Ch. 10 - Design a basic two-transistor current...Ch. 10 - The values of for the transistors in Figure P10.16...Ch. 10 - Consider the circuit in Figure P10.17. The...Ch. 10 - All transistors in the N output current mirror in...Ch. 10 - Design a pnp version of the basic three-transistor...Ch. 10 - Prob. D10.20PCh. 10 - Consider the Wilson current source in Figure...Ch. 10 - Consider the circuit in Figure P10.22. The...Ch. 10 - Consider the Wilson current-source circuit shown...Ch. 10 - Consider the Widlar current source shown in Figure...Ch. 10 - Prob. 10.25PCh. 10 - Consider the circuit in Figure P10.26. Neglect...Ch. 10 - (a) For the Widlar current source shown in Figure...Ch. 10 - Consider the Widlar current source in Problem...Ch. 10 - (a) Design the Widlar current source such that...Ch. 10 - Design a Widlar current source to provide a bias...Ch. 10 - Design the Widlar current source shown in Figure...Ch. 10 - The circuit parameters of the Widlar current...Ch. 10 - Consider the Widlar current source in Figure 10.9....Ch. 10 - Consider the circuit in Figure P10.34. The...Ch. 10 - The modified Widlar current-source circuit shown...Ch. 10 - Consider the circuit in Figure P10.36. Neglect...Ch. 10 - Consider the Widlar current-source circuit with...Ch. 10 - Assume that all transistors in the circuit in...Ch. 10 - In the circuit in Figure P10.39, the transistor...Ch. 10 - Consider the circuit in Figure P10.39, with...Ch. 10 - Consider the circuit shown in Figure P10.41....Ch. 10 - For the circuit shown in Figure P 10.42, assume...Ch. 10 - Consider the circuit in Figure P10.43. The...Ch. 10 - Consider the MOSFET current-source circuit in...Ch. 10 - The MOSFET current-source circuit in Figure P10.44...Ch. 10 - Consider the basic two-transistor NMOS current...Ch. 10 - Prob. 10.47PCh. 10 - Consider the circuit shown in Figure P10.48. Let...Ch. 10 - Prob. 10.49PCh. 10 - The circuit parameters for the circuit shown in...Ch. 10 - Prob. 10.51PCh. 10 - Figure P10.52 is a PMOS version of the...Ch. 10 - The circuit shown in Figure P10.52 is biased at...Ch. 10 - The transistor circuit shown in Figure P10.54 is...Ch. 10 - Assume the circuit shown in Figure P10.54 is...Ch. 10 - The circuit in Figure P 10.56 is a PMOS version of...Ch. 10 - The transistors in Figure P10.56 have the same...Ch. 10 - Consider the NMOS cascode current source in Figure...Ch. 10 - Consider the NMOS current source in Figure P10.59....Ch. 10 - Prob. 10.60PCh. 10 - The transistors in the circuit shown in Figure...Ch. 10 - A Wilson current mirror is shown in Figure...Ch. 10 - Repeat Problem 10.62 for the modified Wilson...Ch. 10 - Prob. 10.64PCh. 10 - Prob. 10.65PCh. 10 - Prob. D10.66PCh. 10 - Prob. D10.67PCh. 10 - The parameters of the transistors in the circuit...Ch. 10 - Prob. 10.69PCh. 10 - Consider the circuit shown in Figure P10.70. The...Ch. 10 - Prob. 10.71PCh. 10 - Prob. D10.72PCh. 10 - Prob. 10.73PCh. 10 - Prob. D10.74PCh. 10 - Prob. 10.75PCh. 10 - For the circuit shown in Figure P10.76, the...Ch. 10 - Prob. 10.77PCh. 10 - Prob. 10.78PCh. 10 - The bias voltage of the MOSFET amplifier with...Ch. 10 - Prob. 10.80PCh. 10 - Prob. 10.81PCh. 10 - Prob. 10.82PCh. 10 - A BJT amplifier with active load is shown in...Ch. 10 - Prob. 10.84PCh. 10 - Prob. 10.85PCh. 10 - Prob. 10.86PCh. 10 - The parameters of the transistors in Figure P10.87...Ch. 10 - The parameters of the transistors in Figure P10.88...Ch. 10 - A BJT cascode amplifier with a cascode active load...Ch. 10 - Design a bipolar cascode amplifier with a cascode...Ch. 10 - Design a MOSFET cascode amplifier with a cascode...Ch. 10 - Design a generalized Widlar current source (Figure...Ch. 10 - The current source to be designed has the general...Ch. 10 - Designa PMOS version of the current source circuit...Ch. 10 - Consider Exercise TYU 10.10. Redesign the circuit...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Design a common emitter amplifier for a Vout of+-6.3V. Vcc is set to 9V. At x=1, Av=12.6 V/V and the dynamic range from 6.3V to -6.3V. Rout must be less than 100 ohms and Rin must be higher than 100 kohmsarrow_forwardThis problem is AC analysis problem. DC analysis is not needed to answer the question. A) If we assume that the peak voltage of Vbe must be less than 10 mV to avoid small signal violations determine the value of Rsig if Vi has a peak amplitude of 1 V and Is = 1mA. Hint: Don't forget r!! Answer: Rsig =. B) If you did the DC analysis on this problem and calculated Vc = 50 mV and Vs = -100 mV what is the maximum amplitude of the output voltage while the circuit stays in active mode. Answer: Vo,max =, When you "verify" a mode of operation you will need to calculate all three voltages (Vc, Ve, VE for BJTS and VG, Vs, Vp for MOSFETS) and show the correct two conditions are satisfied. Assume Capacitors acts like open circuits at DC and short circuits for AC. > Assume the following: 5V o Beta = 100 O VBE = 0.7 o V: (Thermal) = 26 mV o Vr (Threshold) = 2V O VA = - o For MOSFET saturation mode: assume: lp = K(VGs-Vr)? (Assume K = 10 mA/V²). 5kn C2 01 C1 Rsig 1kn 10k Vi IIs :C3 1mA -5Varrow_forwardFor the circuit in Figure 10.20 in the text,VCC = 5 V, RC = 1 kΩ, RB = 10 k, and βmin = 50.Find the range of values of VBB so that the transistor isin saturation.arrow_forward
- 2) Consider the circuit given below. (Assume: K-4mA/V', Vt=-1V, A=0, (K= µCox.(W/L)) da Perform DC analysis and calculate Va. Vsg, Vs, voltages, and Ip, gm, ro values bo Draw a small-signal equivalent circuit Co Calculate Av, Rin, Rout values as shown on the schematic Also ) satwaton mode Test for Fill inthe table VG VSG O2m A Rin Vs QUin ID vo Coo 9m Ro Av Rout Rin Routarrow_forward3. In the figure shown below, Vmax is measured as 5.9 V and V min measured as 1.2V. 18] In the figure shown below, is measured as 5.9 V an (a) Determine the value of V.. (b) Determine the value of Vm. (c) Determine the modulation index. (d) Suppose we can change the value of V. What is the maximum value that we could use for Vm without causing overmodulation?arrow_forwardUsing the small signal equivalent model, find the voltage gain Vo/vi of such E-MOSFET circuit. Neglect impedance due to capacitors by assuming these to be short circuit on AC analysis. Kn =4 mA/V2, and VTh = 2Varrow_forward
- Example 7 For the circuit shown, use R1=R2=47k2, RE=5.7k 22, RC=3.3k , RL=10k 2 and Vcc=12V, VBE=0.7V, B=100, IB=8.48uA 1-Draw the DC equivalent circuit. 2-Find the required parameter for the AC small signal model. 3-Draw the small signal model 4-Calculate the voltage gain. 5-Find the input impedance. 6-Find the output impedance. IB=8.84uA, IC=0.884mA, gm-35.36mA/V r=2.828KM. Usig Rin Gain=- 87.74, Rin=2.524k , Rout=3.3k Vcc R₁ R₂ Rc RE RL ww V Voarrow_forwardIn the following problem we want to calculate an N-type MOSFET transistorparameters when body is connected to the source. The W/L = 10 for the device,and ignore channel length modulation. a)Based on triode and saturation equations that you learned in the class, plotdrain current versus drain voltage, when source is grounded and Vgs = 0.5,1, and 3V. Sweep the drain voltage from 0 V to 3 V. This plot is calledOutput characteristics of a transistor. Highlight the point where transistorsregion is switched from triode region into saturation.arrow_forwardCoonsider the common emitter amplifier shown in figure below. Assume a β of 100, VBE = 0.7V, VT = 25mA and VA = 100V. Draw an equivalent DC model and determine the rπ, transconductance (gm) and ro. Draw an equaivalent AC model using the small-signal model Find an expression for vbe and vo in terms of the input voltagearrow_forward
- Prelab: Using the BJT large signal model for the circuit in Figure 1, determine the Vub voltage required to drive a collector current of I, = 0.5 mA. Use RB = 220 kN, Rc = 2.05 kN, RE = 1.05 kN, and Vee = 5V. Assume Is = 50nA and ß = 250. (Hint: Find Vbe using Ic, then use KVL to find Vbb, remember that Ib can be found using the Ic/ ß relationship) RC Voc R3 bb RE Figure 1 NPN BJT under DC Biasarrow_forward35. The ac schematic of an NMOS common-source stage is shown in the figure below, where part of the biasing circuits has been omitted for simplicity. For the n- channel MOSFET M, the Transconductance 9m = 1mA/V, and body effect and channel length modulation effect are to be neglected. The lower cutoff frequency in Hz of the circuit is approximately at RD 10 ΚΩ V₁o M C 1uF R 10 ΚΩarrow_forwardDesign a common-emitter amplifier to provide a small-signal voltage gain of approximately -10. 1. Consider the circuit shown in Figure 1. Show the following calculations in your notebook: Calculate a value for Rc so that A, z –10 Calculate values for R1 and R2 so that the circuit is bias stable and near the center of the load line. (Note: Use the datasheet for the 2N5209 transistor to make your calculations more accurate). Vcc = 10 V R1 Rc Cc2 Cci RL Vs R, REj = 499 Q Figure 1: Common-emitter amplifier for part #1arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Optical fiber cables, how do they work? | ICT #3; Author: Lesics;https://www.youtube.com/watch?v=jZOg39v73c4;License: Standard Youtube License