General Chemistry: Atoms First
2nd Edition
ISBN: 9780321809261
Author: John E. McMurry, Robert C. Fay
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 10.59SP
How much energy in kilojoules is released when 25.0 g of ethanol vapor at 93.0 °C is cooled to −11.0 °C? Ethanol has mp = −114.1 °C, bp = 78.3 °C, ΔHvap = 38.56 kJ/mol, and ΔHfusion = 4.93 kJ/mol. The molar heat capacity is 112.3 J/(K · mol) for the liquid and 65.6 J/(K · mol) for the vapor.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Sulfur dioxide is produced in enormous amounts for sulfuric acid production. It melts at −73.0°C and boils at −10.0°C. Its ΔHfus is 8.619 kJ/mol, and its ΔHvap is 25.73 kJ/mol. The specific heat capacities of the liquid and gas are 0.995 J/g·K and 0.622 J/g·K, respectively. How much heat is required to convert 5.000 kg of solid SO2 at the melting point to a gas at 60.0 degrees C?
Answer should be in J.
Based on the thermodynamic properties provided for water, determine the energy change when the temperature of 0.450 kg of water
decreased from 103 °C to 42.0 °C. NOTE: MOLAR specfic heat capacities (Cp.n) are given here!
Property
Value
Units
°C
Melting point
Boiling point
100.0
°C
AHfus
6.01
kJ/mol
AHvap
40.67
kJ/mol
p (s)
37.1
J/mol . °C
75.3
J/mol °C
33.6
J/mol · °C
kJ
If 31.5 g of LiBr are dissolved 350.0 g of water at 20.0 °C in an insulated container, a temperature change is observed. The ∆H of solution of LiBr is -48.8 kJ/mol. Assuming that the specific heat of the solution is 4.184 J/(g°C), and that no heat is gained or lost by the container, what will be the final temperature of the solution?
Chapter 10 Solutions
General Chemistry: Atoms First
Ch. 10.1 - The dipole moment of HF is = 1.83 D, and the bond...Ch. 10.1 - Prob. 10.2PCh. 10.1 - Prob. 10.3CPCh. 10.1 - Prob. 10.4CPCh. 10.2 - Prob. 10.5PCh. 10.2 - Prob. 10.6PCh. 10.4 - Prob. 10.7PCh. 10.4 - Chloroform (CHCl3) has Hvap = 29.2 kJ/mol and Svap...Ch. 10.5 - Prob. 10.9PCh. 10.5 - Prob. 10.10P
Ch. 10.8 - Prob. 10.11PCh. 10.8 - Prob. 10.12PCh. 10.8 - Prob. 10.13PCh. 10.8 - Prob. 10.14CPCh. 10.9 - Prob. 10.15PCh. 10.9 - Prob. 10.16CPCh. 10.11 - Prob. 10.17PCh. 10.11 - Prob. 10.18PCh. 10.11 - Prob. 10.19CPCh. 10.11 - Prob. 10.20PCh. 10.11 - Prob. 10.21PCh. 10 - Prob. 10.22CPCh. 10 - Prob. 10.23CPCh. 10 - Zinc sulfide, or sphalerite, crystallizes in the...Ch. 10 - Perovskite, a mineral containing calcium, oxygen,...Ch. 10 - Prob. 10.26CPCh. 10 - Prob. 10.27CPCh. 10 - Prob. 10.28CPCh. 10 - Prob. 10.30CPCh. 10 - Prob. 10.31CPCh. 10 - Why dont all molecules with polar covalent bonds...Ch. 10 - Prob. 10.33SPCh. 10 - Prob. 10.34SPCh. 10 - Prob. 10.35SPCh. 10 - Methanol (CH3OH; bp = 65 C) boils nearly 230 C...Ch. 10 - Prob. 10.37SPCh. 10 - Which of the following substances would you expect...Ch. 10 - Prob. 10.39SPCh. 10 - Prob. 10.40SPCh. 10 - The dipole moment of ClF is 0.887 D and the...Ch. 10 - Prob. 10.42SPCh. 10 - Prob. 10.43SPCh. 10 - The class of ions PtX42, where X is a halogen, has...Ch. 10 - Prob. 10.45SPCh. 10 - Prob. 10.46SPCh. 10 - Prob. 10.47SPCh. 10 - Prob. 10.48SPCh. 10 - Prob. 10.49SPCh. 10 - Prob. 10.50SPCh. 10 - Prob. 10.51SPCh. 10 - Mercury has mp = 38.8 C and bp = 356.6 C. What, if...Ch. 10 - Prob. 10.53SPCh. 10 - Prob. 10.54SPCh. 10 - Prob. 10.55SPCh. 10 - Prob. 10.56SPCh. 10 - Prob. 10.57SPCh. 10 - Prob. 10.58SPCh. 10 - How much energy in kilojoules is released when...Ch. 10 - Draw a molar heating curve for ethanol, C2H5OH,...Ch. 10 - Prob. 10.61SPCh. 10 - Prob. 10.62SPCh. 10 - Prob. 10.63SPCh. 10 - Prob. 10.64SPCh. 10 - Prob. 10.65SPCh. 10 - Prob. 10.66SPCh. 10 - Prob. 10.67SPCh. 10 - Prob. 10.68SPCh. 10 - Prob. 10.69SPCh. 10 - Prob. 10.70SPCh. 10 - Prob. 10.71SPCh. 10 - Prob. 10.72SPCh. 10 - Prob. 10.73SPCh. 10 - Prob. 10.74SPCh. 10 - Prob. 10.75SPCh. 10 - Prob. 10.76SPCh. 10 - Which of the substances diamond, Hg, Cl2, glass,...Ch. 10 - Prob. 10.78SPCh. 10 - Prob. 10.79SPCh. 10 - Prob. 10.80SPCh. 10 - Prob. 10.81SPCh. 10 - Prob. 10.82SPCh. 10 - Prob. 10.83SPCh. 10 - Prob. 10.84SPCh. 10 - Prob. 10.85SPCh. 10 - Prob. 10.86SPCh. 10 - Prob. 10.87SPCh. 10 - Prob. 10.88SPCh. 10 - Sodium has a density of 0.971 g/cm3 and...Ch. 10 - Prob. 10.90SPCh. 10 - Prob. 10.91SPCh. 10 - Prob. 10.92SPCh. 10 - Prob. 10.93SPCh. 10 - Prob. 10.94SPCh. 10 - Prob. 10.95SPCh. 10 - Look at the phase diagram of CO2 in Figure 10.29,...Ch. 10 - Prob. 10.97SPCh. 10 - Prob. 10.98SPCh. 10 - Prob. 10.99SPCh. 10 - Prob. 10.100SPCh. 10 - Prob. 10.101SPCh. 10 - Does solid oxygen (Problem 10.99) melt when...Ch. 10 - Prob. 10.103SPCh. 10 - Prob. 10.104SPCh. 10 - Prob. 10.105SPCh. 10 - Prob. 10.106SPCh. 10 - Prob. 10.107SPCh. 10 - Prob. 10.108CHPCh. 10 - Prob. 10.109CHPCh. 10 - Prob. 10.110CHPCh. 10 - Prob. 10.111CHPCh. 10 - Prob. 10.112CHPCh. 10 - Prob. 10.113CHPCh. 10 - Prob. 10.114CHPCh. 10 - Prob. 10.115CHPCh. 10 - Magnesium metal has Hfusion = 9.037 kJ/mol and...Ch. 10 - Prob. 10.117CHPCh. 10 - Prob. 10.118CHPCh. 10 - Prob. 10.119CHPCh. 10 - Prob. 10.120CHPCh. 10 - Prob. 10.121CHPCh. 10 - Prob. 10.122CHPCh. 10 - Prob. 10.123CHPCh. 10 - Calculate the percent volume occupied by the...Ch. 10 - Prob. 10.125CHPCh. 10 - Prob. 10.126CHPCh. 10 - Prob. 10.127CHPCh. 10 - A drawing of the NaCl unit cell is shown in Figure...Ch. 10 - Niobium oxide crystallizes in the following cubic...Ch. 10 - Prob. 10.130CHPCh. 10 - One form of silver telluride (Ag2Te) crystallizes...Ch. 10 - Prob. 10.132CHPCh. 10 - Prob. 10.133MPCh. 10 - Prob. 10.134MPCh. 10 - A group 3A metal has a density of 2.70 g/cm3 and a...Ch. 10 - Prob. 10.136MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- 1. Which of the following processes requires the largest input of energy as heat? raising the temperature of 100 g of water by 1.0 °C vaporization of 0.10 g of water at 100 °C melting 1.0 g of ice at 0 °C warming 1.0 g of ice from −50 °C to 0 °C (specific heat of ice = 2.06 J/g · K)arrow_forwardThe cooling effect of alcohol on the skin is due to its evaporation. Calculate the heat of vaporization of ethanol (ethyl alcohol), C2H5OH. C2H5OH(l)C2H5OH(g);H=? The standard enthalpy of formation of C2H5OH(l) is 277.7 kJ/mol and that of C2H5OH(g) is 235.1 kJ/mol.arrow_forwardIf you want to convert 56.0 g ice (at 0 °C) to water at 75.0 °C, calculate how many grams of propane, C3H8, you would have to bum to supply the energy to melt the ice and then warm it to the final temperature (at 1 bar).arrow_forward
- Benzene, C6H6, is an organic liquid that freezes at 5.5 C (Figure 11.1) to form beautiful, feather-like crystals. How much energy is evolved as heat when 15.5 g of benzene freezes at 5.5 C? (The enthalpy of fusion of benzene is 9.95 kJ/mol.) If the 15.5-g sample is remelted, again at 5.5 C, what quantity of energy is required to convert it to a liquid?arrow_forwardAre changes in state physical or chemical changes? Explain. What type of forces must be overcome to melt or vaporize a substance (are these forces intramolecular or intermolecular)? Define the molar heat of fusion and molar heat of vaporization. Why is the molar heat of vaporization of water so much larger than its molar heat of fusion? Why does the boiling point of a liquid vary with altitude?arrow_forwardSuppose you wanted to cool 100. g of water from 20 C to 0 C using dry ice, CO2(s). The enthalpy of sublimation of CO2(s) is 25.2 kJ/mol. What mass of dry ice should you need? (a) 033 g (b) 15 g (c) 3.5 g (d) 150 garrow_forward
- Which evolves more heat—freezing 100.0 g of benzene or 100.0 g of bromine?arrow_forwardIf 14.5 kJ of heat were added to 485 g of liquid water, how much would its temperature increase?arrow_forwardIt has been determined that the body can generate 5500 kJ of energy during one hour of strenuous exercise. Perspiration is the bodys mechanism for eliminating this heat. What mass of water would have to be evaporated through perspiration to rid the body of the heat generated during 2 hours of exercise? (The heat of vaporization of water is 40.6 kJ/mol.)arrow_forward
- Dissolving 6.00 g CaCl2 in 300 mL of water causes the temperature of the solution to increase by 3.43 C. Assume that the specific heat of the solution is 4.18 J/g K and its mass is 306 g. (a) Calculate the enthalpy change when the CaCl2 dissolves. Is the process exothermic or endothermic? (b) Determine H on a molar basis for CaCl2(s)H2OCa2+(aq)+2Cl(aq)arrow_forwardBased on the thermodynamic properties provided for water, determine the amount of energy needed for 2.60 kg of water to go from -3.00 °C to 61.0 °C. NOTE: MOLAR specfic heat capacities (CP.n) are given here! Property Value Units Melting point 0.0 °C Boiling point 100.0 °C ΔΗus 6.01 kJ/mol AHvap 40.67 kJ/mol Gp (s) 37.1 J/mol · °C p () 75.3 J/mol · °C 33.6 J/mol · °C kJarrow_forwardCalculate the heat in kJ for 175 g of water vapor condensing to liquid water from 228.0 oC to 175.0 oC with a specific heat capacity of 1.996 J/(g·oC). +18.5 kJ +60.9 kJ +79.5 kJ -18.5 kJ -79.5 kJ -60.9 kJarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Types of Matter: Elements, Compounds and Mixtures; Author: Professor Dave Explains;https://www.youtube.com/watch?v=dggHWvFJ8Xs;License: Standard YouTube License, CC-BY